Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of the phonon spectrum and heat capacity of TATB crystal

Jiang Wen-Can Chen Hua Zhang Wei-Bin

Citation:

First-principles study of the phonon spectrum and heat capacity of TATB crystal

Jiang Wen-Can, Chen Hua, Zhang Wei-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The widely used energetic material 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) is an extremely powerful explosive and known for its extraordinary insensitivity to external stimuli (i.e., shock, friction, impact). TATB crystal exhibits graphitic-like sheets with significant inter- and intra-molecular hydrogen bondings within each layer and weak van der Waals (vdW) interactions between layers. Although TATB has been extensively studied both theoretically and experimentally, a fully understanding of its unique detonation phenomenon at a microscopic level is still lacking. Before establishing the exact pathway through which the initial energy is transferred, a fundamental knowledge of both the lattice vibrations (phonons) and molecule internal vibrations must be gained at the first step. Recently, it has been demonstrated that density functional theory (DFT) is inadequate in treating conventional energetic materials, within which dispersion interactions appear to be major contributors to the binding forces. In the present work, phonon spectrum and specific heat of TATB crystal are calculated in the framework of DFT with vdW-DF2 correction, which has been validated in our previous studies of the equation of state, structure and vibration property of TATB crystal under pressures in a range of 0-8.5 GPa. Structure optimization is preformed at zero-pressure, followed by calculating the equation of state, crystal density and lattice energy. The computed results are found to fit well with the experimental and other theoretical values. Frozen phonon method is used to calculate the phonon spectrum and phonon density of states. We find that the phonon density of states reaches its maximum at a vibration frequency of 2.3 THz, which is in good agreement with the strong absorption peak at 2.22 THz observed by THz spectroscopy. The assignment of several Raman active vibrations of TATB above 7.5 THz is given, and a comparison with other published results is also made in this study. Furthermore, the contributions of different phonon vibration modes to the specific heat are derived from the phonon density of states. The number of doorway modes (i.e., the low frequency molecular vibrations that is critical to detonation initiation) of TATB in a range of 6.0-21.0 THz is estimated based on the phonon density of states. It is shown that the phonon modes in a range of 0-27.5 THz would contribute 93.7% of the total specific heat at room temperature. By combining a Mulliken population analysis of TATB with the relative contribution of phonon vibration modes to the specific heat at 300-600 K, we conclude that C-NO2 bond might be the trigger bond of TATB during thermolysis.
      Corresponding author: Zhang Wei-Bin, weibinzhang@caep.cn
    • Funds: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0302013).
    [1]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485

    [2]

    Ji G F 2002 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [姬广富 2002 博士学位论文 (南京: 南京理工大学)]

    [3]

    Fedorov I A, Zhuravlev Y N 2014 Chem. Phys. 436 1

    [4]

    Liu H 2006 Ph. D. Dissertation (Shichuan: Sounthwest Jiaotong University) (in Chinese) [刘红 2006 博士学位论文 (四川: 西南交通大学)]

    [5]

    Ojeda O U, ağin T 2011 J. Phys. Chem. B 115 12085

    [6]

    Gorshkov M, Grebenkin K, Zherebtsov A, Zaikin V, Slobodenyukov V, Tkachev O 2007 Combust. Explo. Shock 43 78

    [7]

    Bourasseau E, Maillet J B, Desbiens N, Stoltz G 2011 J. Phys. Chem. A 115 10729

    [8]

    Xiao J J, Huang Y C, Hu Y J, Xiao H M 2005 Sci. China Ser. B Chem. 48 504

    [9]

    Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524

    [10]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) pp1-2

    [11]

    Burnham A K, Weese R K, Wemhoff A P, Maienschein J L 2007 J. Therm. Anal. Calorim. 89 407

    [12]

    Dlott D D 2011 Annu. Rev. Phys. Chem. 62 575

    [13]

    Tarver C 1997 J. Phys. Chem. A 101 4845

    [14]

    Dlott D D 2003 J. Theor. Comput. Chem. 13 125

    [15]

    Henson B F, Smilowitz L B 2010 Shock Wave Science and Technology Reference Library Berlin Heidelberg 2010 pp45-128

    [16]

    Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505

    [17]

    Coffey C, Toton E 1982 J. Chem. Phys. 76 949

    [18]

    Dlott D, Fayer M D 1990 J.Chem. Phys. 92 3798

    [19]

    Tokmakoff A, Fayer M, Dlott D D 1993 J. Phys. Chem. 97 1901

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [21]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [22]

    Baroni S, Gironcoli S D, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [23]

    Li X X, Tao X M, Chen H M, Ouyang Y F, Du Y 2013 Chin. Phys. B 22 366

    [24]

    Feng S K, Li S M, Fu H Z 2014 Chin. Phys. B 23 420

    [25]

    Yu Y, Chen C L, Zhao G D, Zhao X L, Zhu X H 2014 Chin. Phys. Lett. 31 100

    [26]

    Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 520

    [27]

    Pu C Y, Ye X T, Jiang H L, Zhang F W, Lu Z W, He J B, Zhou D W 2015 Chin. Phys. B 3 275

    [28]

    Velizhanin K A, Kilina S, Sewell T D, Piryatinski A 2008 J. Phys. Chem. B 112 13252

    [29]

    Wu Z, Kalia R K, Nakano A, Vashishta P 2011 J. Chem. Phys. 134 204509

    [30]

    Long Y, Chen J 2014 Philos. Mag. 94 2656

    [31]

    Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q 2009 J. Phys. Chem. A 114 1082

    [32]

    Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734

    [33]

    Lee K, Murray D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101

    [34]

    Jiang W C, Chen H, Zhang W B 2016 Chin. J. Energ. Mater. (in Chinese) [蒋文灿, 陈华, 张伟斌 2016 含能材料] (in press)

    [35]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [36]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [37]

    Birch F 1947 Phys. Rev. 71 809

    [38]

    Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976 p224

    [39]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286

    [40]

    Rosen J M, Dickinson C 1969 J. Chem. Eng. Data 14 120

    [41]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. -Chem. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [42]

    Liu L, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [43]

    Valenzano L, Slough W J, Perger W 2012 Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, IIIinois, June 26-July 1, 2011 pp1191-1194

    [44]

    Xu W T 1999 Group Theory and Its Applications in Solid State Physics (Beijing: Higher Education Press) pp218-221 (in Chinese) [徐婉棠 1999 群论及其在固体物理中的应用(北京: 高等教育出版社 第218-221页)]

    [45]

    Pravica M, Yulga B, Liu Z, Tschauner O 2007 Phys. Rev. B 76 64102

    [46]

    Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834

    [47]

    Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63

    [48]

    Jia C Q, Song T, Liu X Y, Zhang Z W, Jiang G 2013 Chin. J. Energ. Mater. 21 434 (in Chinese) [贾传强, 宋涛, 刘晓亚, 张振伟, 蒋刚 2013 含能材料 21 434]

    [49]

    Hill J R, Dlott D D 1989 J. Chem. Phys. 89 830

    [50]

    Ye S, Tonokura K, Koshi M 2003 Combust. Flame 132 240

    [51]

    Ge S H, Cheng X L, Wu L S, Yang X D 2007 J. Mol. Struct. 809 55

    [52]

    Huang K, Han R Q 1966 Solid States Physics (Beijing: People's Education Press) pp79-82 (in Chinese) [黄昆, 韩汝琦 1966 固体物理学(北京: 人民教育出版社)第79-82页]

    [53]

    Xiao H M, Fan J F, Gu Z M, Dong H S 1998 Chem. Phys. 226 15

    [54]

    Wu Q, Chen H, Xiong G, Zhu W, Xiao H 2015 J. Phys. Chem. C 29 16500

  • [1]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485

    [2]

    Ji G F 2002 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [姬广富 2002 博士学位论文 (南京: 南京理工大学)]

    [3]

    Fedorov I A, Zhuravlev Y N 2014 Chem. Phys. 436 1

    [4]

    Liu H 2006 Ph. D. Dissertation (Shichuan: Sounthwest Jiaotong University) (in Chinese) [刘红 2006 博士学位论文 (四川: 西南交通大学)]

    [5]

    Ojeda O U, ağin T 2011 J. Phys. Chem. B 115 12085

    [6]

    Gorshkov M, Grebenkin K, Zherebtsov A, Zaikin V, Slobodenyukov V, Tkachev O 2007 Combust. Explo. Shock 43 78

    [7]

    Bourasseau E, Maillet J B, Desbiens N, Stoltz G 2011 J. Phys. Chem. A 115 10729

    [8]

    Xiao J J, Huang Y C, Hu Y J, Xiao H M 2005 Sci. China Ser. B Chem. 48 504

    [9]

    Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524

    [10]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) pp1-2

    [11]

    Burnham A K, Weese R K, Wemhoff A P, Maienschein J L 2007 J. Therm. Anal. Calorim. 89 407

    [12]

    Dlott D D 2011 Annu. Rev. Phys. Chem. 62 575

    [13]

    Tarver C 1997 J. Phys. Chem. A 101 4845

    [14]

    Dlott D D 2003 J. Theor. Comput. Chem. 13 125

    [15]

    Henson B F, Smilowitz L B 2010 Shock Wave Science and Technology Reference Library Berlin Heidelberg 2010 pp45-128

    [16]

    Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505

    [17]

    Coffey C, Toton E 1982 J. Chem. Phys. 76 949

    [18]

    Dlott D, Fayer M D 1990 J.Chem. Phys. 92 3798

    [19]

    Tokmakoff A, Fayer M, Dlott D D 1993 J. Phys. Chem. 97 1901

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [21]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [22]

    Baroni S, Gironcoli S D, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [23]

    Li X X, Tao X M, Chen H M, Ouyang Y F, Du Y 2013 Chin. Phys. B 22 366

    [24]

    Feng S K, Li S M, Fu H Z 2014 Chin. Phys. B 23 420

    [25]

    Yu Y, Chen C L, Zhao G D, Zhao X L, Zhu X H 2014 Chin. Phys. Lett. 31 100

    [26]

    Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 520

    [27]

    Pu C Y, Ye X T, Jiang H L, Zhang F W, Lu Z W, He J B, Zhou D W 2015 Chin. Phys. B 3 275

    [28]

    Velizhanin K A, Kilina S, Sewell T D, Piryatinski A 2008 J. Phys. Chem. B 112 13252

    [29]

    Wu Z, Kalia R K, Nakano A, Vashishta P 2011 J. Chem. Phys. 134 204509

    [30]

    Long Y, Chen J 2014 Philos. Mag. 94 2656

    [31]

    Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q 2009 J. Phys. Chem. A 114 1082

    [32]

    Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734

    [33]

    Lee K, Murray D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101

    [34]

    Jiang W C, Chen H, Zhang W B 2016 Chin. J. Energ. Mater. (in Chinese) [蒋文灿, 陈华, 张伟斌 2016 含能材料] (in press)

    [35]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [36]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [37]

    Birch F 1947 Phys. Rev. 71 809

    [38]

    Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976 p224

    [39]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286

    [40]

    Rosen J M, Dickinson C 1969 J. Chem. Eng. Data 14 120

    [41]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. -Chem. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [42]

    Liu L, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [43]

    Valenzano L, Slough W J, Perger W 2012 Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, IIIinois, June 26-July 1, 2011 pp1191-1194

    [44]

    Xu W T 1999 Group Theory and Its Applications in Solid State Physics (Beijing: Higher Education Press) pp218-221 (in Chinese) [徐婉棠 1999 群论及其在固体物理中的应用(北京: 高等教育出版社 第218-221页)]

    [45]

    Pravica M, Yulga B, Liu Z, Tschauner O 2007 Phys. Rev. B 76 64102

    [46]

    Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834

    [47]

    Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63

    [48]

    Jia C Q, Song T, Liu X Y, Zhang Z W, Jiang G 2013 Chin. J. Energ. Mater. 21 434 (in Chinese) [贾传强, 宋涛, 刘晓亚, 张振伟, 蒋刚 2013 含能材料 21 434]

    [49]

    Hill J R, Dlott D D 1989 J. Chem. Phys. 89 830

    [50]

    Ye S, Tonokura K, Koshi M 2003 Combust. Flame 132 240

    [51]

    Ge S H, Cheng X L, Wu L S, Yang X D 2007 J. Mol. Struct. 809 55

    [52]

    Huang K, Han R Q 1966 Solid States Physics (Beijing: People's Education Press) pp79-82 (in Chinese) [黄昆, 韩汝琦 1966 固体物理学(北京: 人民教育出版社)第79-82页]

    [53]

    Xiao H M, Fan J F, Gu Z M, Dong H S 1998 Chem. Phys. 226 15

    [54]

    Wu Q, Chen H, Xiong G, Zhu W, Xiao H 2015 J. Phys. Chem. C 29 16500

  • [1] Ma Ze-Cheng, Liu Zeng-Lin, Cheng Bin, Liang Shi-Jun, Miao Feng. In-situ strain engineering and applications of van der Waals materials. Acta Physica Sinica, 2024, 73(11): 110701. doi: 10.7498/aps.73.20240353
    [2] Xiao Cong, Yao Wang. Quantum layertronics in van der Waals systems. Acta Physica Sinica, 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [3] Gu Zi-Heng, Zang Qiang, Zheng Gai-Ge. Dispersion properties of van der Waals phonon polaritons modulated by Weyl semimetals. Acta Physica Sinica, 2023, 72(19): 197102. doi: 10.7498/aps.72.20230167
    [4] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [5] Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang. Two-dimensional van der Waals: Characterization and manipulation of superconductivity. Acta Physica Sinica, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [6] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [7] Li Yao-Hua, Dong Yao-Yong, Dong Hui, Zheng Xue-Jun. Tearing behavior induced by van der Waals force at heterogeneous interface during two-dimensional MoS2 nanoindentation. Acta Physica Sinica, 2022, 71(19): 194601. doi: 10.7498/aps.71.20220875
    [8] Zhang Fang, Jia Li-Qun, Sun Xian-Ting, Dai Xian-Qi, Huang Qi-Xiang, Li Wei. Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field. Acta Physica Sinica, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [9] Wang Li-Peng, Jiang Xin-Biao, Wu Hong-Chun, Fan Hui-Qing. Ab initio calculation of the thermal neutron scattering cross sections of uranium mononitride. Acta Physica Sinica, 2018, 67(20): 202801. doi: 10.7498/aps.67.20180834
    [10] Yan Shun-Tao, Jiang Zhen-Yi. First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy. Acta Physica Sinica, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [11] Cao Ning-Tong, Zhang Lei, Lü Lu, Xie Hai-Peng, Huang Han, Niu Dong-Mei, Gao Yong-Li. van der Waals heterostructure about CuPc/MoS2(0001). Acta Physica Sinica, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [12] Li Xi-Lian, Liu Gang, Du Tao-Yuan, Zhao Jing, Wu Mu-Sheng, Ouyang Chu-Ying, Xu Bo. Effect of strain on Li adsorption on silicene. Acta Physica Sinica, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [13] Jia Ya-Qiong, Wang Shu, Zhu Ming, Zhang Ke-Sheng, Yuan Fei-Ge. The analytic model between effective heat capacity and relaxation time in gas acoustic relaxation process. Acta Physica Sinica, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [14] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [15] Wu Yan-Zhao, Xie Ning, Liu Jian-Jing, Jiao Yong-Fang. Phonon spectra and specific heat calculation of single wall carbon nanotube. Acta Physica Sinica, 2009, 58(11): 7787-7791. doi: 10.7498/aps.58.7787
    [16] Xiao Yang, Yan Xiao-Hong, Cao Jue-Xian, Ding Jian-Wen. Phonon spectrum of single-walled carbon nanotubes. Acta Physica Sinica, 2003, 52(7): 1720-1725. doi: 10.7498/aps.52.1720
    [17] Shi Zhu-Yi, Ji Shi-Yin. Specific heat capacity and phase transition on 148—158Sm nucleiin microscopic core plus two-quasiparticle model. Acta Physica Sinica, 2003, 52(1): 42-47. doi: 10.7498/aps.52.42
    [18] LI MI. THE INTERATOMIC INTERACTION AND PHONON DISPERSIONS IN IRON. Acta Physica Sinica, 2000, 49(9): 1692-1695. doi: 10.7498/aps.49.1692
    [19] GUAN LI-QIANG, WANG CUI, LI ZHEN-JI, JIN GUANG-XING. THE INFLUENCE OF s-f EXCHANGE EFFECT AND ELECTRON-EXCHANGE EFFECT ON THE SPECIFIC-HEAT OF CONDUCTING ELECTRON. Acta Physica Sinica, 1997, 46(8): 1598-1604. doi: 10.7498/aps.46.1598
    [20] SUN CHIA-CHUNG, KIANG TUNG-CHEN. THE PROBLEM OF THE VAN DER WAALS FORCES FOR A SYSTEM OF ASYMMETRIC TOP MOLECULES. Acta Physica Sinica, 1961, 17(12): 559-568. doi: 10.7498/aps.17.559
Metrics
  • Abstract views:  8363
  • PDF Downloads:  378
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2016
  • Accepted Date:  05 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map