Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of high-temperature chemical non-equilibrium and surface micropore effect on boundary layer stability

WEN Jinghao LI Chenhui TU Guohua WAN Bingbing DUAN Maochang ZHANG Rui

Citation:

Influence of high-temperature chemical non-equilibrium and surface micropore effect on boundary layer stability

WEN Jinghao, LI Chenhui, TU Guohua, WAN Bingbing, DUAN Maochang, ZHANG Rui
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The transition from laminar to turbulent flow is one of the main aerodynamic challenges in aircraft design and development. When the flight Mach number is sufficiently high, the aircraft surface experiences micropore effects and high-temperature gas thermochemical reactions. At present, boundary layer instability has become a more complex problem, and its mechanism is still unclear. In this study, a linear stability analysis method is developed which takes into consideration high-temperature chemical non-equilibrium process and surface micropore effect. For flight conditions at high altitude (H = 25 km) with Mach numbers 10, 15, and 20, the effects of micropore effects, chemical non-equilibrium effects, and their joint effect on flow stability are contrasted and investigated. The results show that the chemical non-equilibrium effect can contribute to the boundary layer's mode instability, while the micropore effect can restrain the second mode instability. The coexistence of the two often contributes to the instability of the second mode, because the former is heavier than the latter. The chemical non-equilibrium effect can reduce the frequency range corresponding to the second mode of pore effect inhibition, which results in the chemical non-equilibrium effect enhancing the inhibition effect of the micropore effect in the local low-frequency range and weakening its inhibition effect in the high-frequency range. This, in turn, causes a decrease in the corresponding N value variation by pore effect. Furthermore, when both effects are present, the micropore effect's capacity to inhibit the second mode is not significantly affected by change in Mach number.
  • 图 1  简单截面示意

    Figure 1.  Schematic diagram of a simple cross-section.

    图 2  CPG工况流向x/Lref = 600处温度剖面对比

    Figure 2.  Temperature profile comparison under CPG circumstance at x/Lref = 600.

    图 3  CNE工况流向x/Lref = 600处基本流对比 (a)流向速度; (b)温度; (c)组分浓度

    Figure 3.  Baisc flow profiles at x/Lref = 600 under CNE circumstance: (a) Streamwise velocity; (b) temperature; (c) species concentration.

    图 4  稳定性分析结果与文献对比 (a)特征函数; (b)模态增长率

    Figure 4.  Comparison of literature and present results: (a) Eigenfunction; (b) growth rate.

    图 5  网格无关性验证 (a)流向速度; (b)模态增长率

    Figure 5.  Verification of grid independence: (a) Streamwise velocity; (b) growth rate.

    图 6  CPG下Ma10工况在位置x/Lref = 400模态增长率对比

    Figure 6.  Comparison of growth rate at position x/Lref = 400 for Ma10 condition under CPG.

    图 7  微槽和圆孔的对比 (a) N值曲线; (b) 模态增长率变化率

    Figure 7.  Comparison of results between microgrooves and micropores: (a) N-value curves; (b) relative change of growth rate.

    图 8  不同截面参数下在位置x/Lref = 600的模态增长率变化

    Figure 8.  Changes in growth rate under different cross-sectional parameters at x/Lref = 600.

    图 9  Ma10工况不同气体模型边界层基本流剖面 (a)速度; (b)温度

    Figure 9.  Basic flow profiles of boundary layer for different gas models under Ma10 condition: (a) Streamwise velocity; (b) temperature.

    图 10  Ma10工况不同气体模型模态增长率和相速度对比 (a) x/Lref = 600; (b)沿流向F = 124 kHz

    Figure 10.  Comparison of growth rate and phase velocity of different gas models under Ma10: (a) x/Lref = 600; (b) modal frequency F = 124 kHz along the streamwise direction.

    图 11  Ma10工况不同气体模型对比 (a)中性曲线; (b)N值包络

    Figure 11.  Comparison of different gas model under Ma10: (a) Neutral curve; (b) N-value envelope.

    图 12  不同气体模型光滑和多孔壁增长率及其相对变化率对比 (a) x/Lref = 400; (b) x/Lref = 600; (c) x/Lref = 800

    Figure 12.  Comparing the growth rates of smooth and porous walls and their relative change for different gas models: (a) x/Lref = 400; (b) x/Lref = 600; (c) x/Lref = 800.

    图 13  光滑和多孔壁在x/Lref = 600处压力特征函数对比

    Figure 13.  Comparison of the pressure eigenfunctions at x/Lref = 600 for smooth and porous walls.

    图 14  不同气体模型光滑与多孔壁的N值包络线对比

    Figure 14.  Comparison of N-value envelope for smooth and porous walls of different gas models.

    图 15  CNE工况不同马赫数的模态增长率对比 (a) x/Lref = 600; (b) 沿流向F = 130 kHz

    Figure 15.  Comparison of growth rates at different Mach numbers under CNE condition: (a) x/Lref = 600; (b) modal frequency F = 130 kHz along the streamwise direction

    图 16  不同马赫数中性曲线对比 (a) CPG; (b) CNE

    Figure 16.  Comparison of neutral curves at different Mach numbers: (a) CPG; (b) CNE.

    图 17  CNE工况不同马赫数N值包络对比

    Figure 17.  Comparison of N-value envelopes at different Mach numbers under CNE condition.

    图 18  不同马赫数光滑和多孔壁增长率及相对变化率对比 (a) x/Lref = 400; (b) x/Lref = 600

    Figure 18.  Comparison of growth rates and relative change of smooth and porous walls at different Mach numbers: (a) x/Lref = 400; (b) x/Lref = 600.

    图 19  不同马赫数下光滑与多孔壁的N值包络

    Figure 19.  N-value envelopes of smooth and porous walls at different Mach numbers.

    表 1  不同马赫数对应来流参数

    Table 1.  Flow characteristics for various Mach numbers.

    MaTe/Kρe/(kg·m–3)Ue/(m·s–1)Re/m–1
    10221.550.0400852983.68.26×106
    15221.550.0400854475.41.24×107
    20221.550.0400855967.21.65×107
    DownLoad: CSV

    表 2  不同截面参数

    Table 2.  Parameters of different cross-sections.

    Parameters of porous wallH/mmb/mmn
    Porous-1[29]6.7520.9450.66
    Porous-2[47]18.8550.9420.66
    Porous-3[48]2.0000.093750.25
    Porous-4[52]0.3520.2640.53
    DownLoad: CSV

    表 3  不同马赫数下x/Lref=900位置的N值相对变化率

    Table 3.  Relative change of N-values at x/Lref=900 under different Mach numbers.

    MaN/Nmax, smooth) CPGN/Nmax, smooth) CNE
    1026.8%18.2%
    1522.1%19.8%
    2027.2%15.5%
    DownLoad: CSV
    Baidu
  • [1]

    陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚 2017 空气动力学报 35 311

    Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017 Acta Aerodyn. Sin. 35 311

    [2]

    Currie J G, Dickason A M 1988 VA: Defense Technical Information Center

    [3]

    Candler G V 2019 Annu. Rev. Fluid Mech 51 379Google Scholar

    [4]

    Bitter N P 2015 Ph. D. Dissertation (Pasadena: California Institute of Technology

    [5]

    Malik M R 1991 Phys. Fluids 3 803Google Scholar

    [6]

    Stuckert G, Reed H L 1994 AIAA J. 32 1384Google Scholar

    [7]

    Hudson M L, Chokani N, Candler G V 1997 AIAA J. 35 958Google Scholar

    [8]

    Franko K, Maccormack R, Lele S 2010 40th Fluid Dynamics Conference and Exhibit Chicago, June 28–July 1, 2010

    [9]

    Chen X L, Wang L, Fu S 2021 Phys. Fluids 33 034132Google Scholar

    [10]

    赵洲源, 陈贤亮, 王亮, 符松 2023 气体物理 8 35

    Zhao Z Y, Chen X L, Wang L, Fu S 2023 Phys. Gases 8 35

    [11]

    李晨辉, 万兵兵, 涂国华, 胡伟波, 陈坚强, 蒋崇文 2024 空气动力学报 42 12

    Li C H, Wan B B, Tu G H, Hu W B, Chen J Q, Jiang C W 2024 Acta Aerodyn. Sin. 42 12

    [12]

    Fernando M M, Beyak E S, Pinna F, Reed H L, Brussels B 2019 Phys. Fluids 31 044101Google Scholar

    [13]

    Mcbride B J, Zehe M J, Sanford G 2002 NASA/TP 211556

    [14]

    Magin T, Degrez G 2005 J. Comput. Phys. 198 424

    [15]

    Yos J M 1963 Research & Advanced Development Division Avco Corporation Technical Memorandum

    [16]

    Ramshaw J D 1993 J. Non-Equilibrium Thermodyn. 18 12

    [17]

    Chapman S, Cowling T G 1952 Math. Gaz. 38 323

    [18]

    Blottner F G, Johnson M, Ellis M 1971 Sandia Laboratory

    [19]

    Brokaw R S 1965 J. Chem. Phys. 42 1140Google Scholar

    [20]

    Gupta R N, Yos J M, Thompson R A 1990 NASA Sti/recon Technical Report N

    [21]

    万兵兵, 韩宇峰, 樊宇, 罗纪生 2017 航空动力学报 32 188

    Wan B B, Han Y F, Fan Y, Luo J S 2017 J. Aerosp. Power 32 188

    [22]

    Park C, Jaffe R L, Partridge H 2001 J. Thermophys. Heat Transfer 15 76Google Scholar

    [23]

    Park C 1985 AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14-17, 1985 p85-0247

    [24]

    PARK C 1993 J. Thermophys. Heat Transfer 7 385Google Scholar

    [25]

    Li C H, Wan B B, Chen J Q, Tu G H, Hu W B, Jiang C W 2024 Int. J. Heat Mass Transfer 233 126018Google Scholar

    [26]

    Al-Jothery H K M, Albarody T M B, Yusoff P S M, Abdullah M A, Hussein A R 2020 IOP Conference Series: Materials Science and Engineering 863 012003Google Scholar

    [27]

    Malmuth N, Fedorov A, Shalaev V, Cole J, Khokhlov A, Hites M, Williams D 1998 2nd AIAA Theoretical Fluid Mechanics Meeting, Albuquerque, New Mexico, June 15-18, 1998

    [28]

    Fedorov A, Malmuth N 2001 AIAA J. 39 605Google Scholar

    [29]

    Zhao R, Liu T, Wen C Y, Zhu J, Cheng L 2018 AIAA J. 56 2942Google Scholar

    [30]

    Wartemann V, Heinrich L, Sandham N D 2009 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, October 19-22, 2009 Session: HYTASP-1: Aerodynamics I

    [31]

    Xu J K, Liu J X, Mughal S, Yu P X, Bai J Q 2020 Phys. Fluids 32 044105Google Scholar

    [32]

    Wang X Q, Zhong X L 2012 Phys. Fluids 24 034105Google Scholar

    [33]

    Rasheed A, Hornung H G, Fedorov A, Malmuth N D 2002 AIAA J. 40 481Google Scholar

    [34]

    Lukashevich S V, Morozov S O, Shiplyuk A N 2016 J. Appl. Mech. Tech. Phys. 57 873Google Scholar

    [35]

    郭启龙, 涂国华, 陈坚强, 袁先旭, 万兵兵 2020 航空动力学报 35 135

    Guo Q L, Tu G H, Chen J Q, Yuan X X, Wan B B 2020 J. Aerosp. Power 35 135

    [36]

    刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵 2022 71 1947011Google Scholar

    Liu Y, Tu G H, Xiang X H, Li X H, Guo Q L, Wan B B 2022 Acta Phys. Sin. 71 194701Google Scholar

    [37]

    Gui Y T, Wang W Z, Zhao R, Zhao J Q, Wu J 2022 AIAA J. 60 4453Google Scholar

    [38]

    Liu X, Zhao R, Wen C Y, Yuan W 2024 Acta Mech. 235 1109Google Scholar

    [39]

    Wang X W, Zhong X L 2013 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, January 07-10, 2013 p827

    [40]

    Wang X W 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 2018 2088

    [41]

    Ken C K U, Hao J, Zhao R, Wen C Y 2023 Aerosp. Sci. Technol. 141 108520

    [42]

    Walter G V, Charles H K, Teichmann T 1966 Phys. Today 19 95

    [43]

    Bird R B, Stewart W E, Lightfoot E N 2002 2nd Wiley international ed. (New York: J. Wiley

    [44]

    Wilke C R 1950 J. Chem. Phys. 18 517Google Scholar

    [45]

    Wan B B, Su C H, Chen J Q 2020 AIAA J. 58 4047Google Scholar

    [46]

    Zhao R, Wen C Y, Tian X D, Long T H, Yuan W 2018 Int. J. Heat Mass Transfer 121 986Google Scholar

    [47]

    Brès G A, Inkman M, Colonius T, Fedorov A 2013 J. Fluid Mech 726 312Google Scholar

    [48]

    Luedeke H, Sandham N D, Wartemann V 2012 AIAA J. 50 1281Google Scholar

    [49]

    2021-10-29] [赵瑞, 张新昕, 魏昊功, 温志涌 中国专利 CN110135062B [2021-10-29]

    Zhao R, Zhang X X, Wei H G, Wen C Y China Patent CN110135062B

    [50]

    Kline H L , Chang C L , Li F 2018 Fluid Dynamics Conference Atlanta, Georgia, June 25-29, 2018 p3699

    [51]

    Miró M Fernando, Pinna F, Beyak E S, Barbante P, Reed H L 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 2018 1824

    [52]

    赵瑞, 严昊, 席柯, 温志涌 航空科学技术 31 104

    Zhao R, Yan H, Xi K, Wen C Y 2020 Aeronaut. Sci. Technol. 31 104

  • [1] Zeng Rui-Tong, Yi Shi-He, Lu Xiao-Ge, Zhao Yu-Xin, Zhang Bo, Gang Dun-Dian. Experimental study on boundary layer of internal flow visible supersonic nozzle. Acta Physica Sinica, doi: 10.7498/aps.73.20240713
    [2] Chen Juan, Hu Wei, Lu Da-Quan. Influence of cubic nonlinearity effect on quadratic solitons in boundary-constrained self-focusing oscillatory response function system. Acta Physica Sinica, doi: 10.7498/aps.71.20220865
    [3] He Xiao-Qiu, Xiong Yong-Liang, Peng Ze-Rui, Xu Shun. Boundary layers and energy dissipation rates on a half soap bubble heated at the equator. Acta Physica Sinica, doi: 10.7498/aps.71.20220693
    [4] Fan Hai-Long, Chen Ming-Wen. Effect of magnetic field on stability in mushy layer during binary alloy solidification. Acta Physica Sinica, doi: 10.7498/aps.70.20201748
    [5] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, doi: 10.7498/aps.70.20210836
    [6] Lu Chang-Gen, Shen Lu-Yu, Zhu Xiao-Qing. Numerical study of effect of pressure gradient on boundary-layer receptivity under localized wall blowing/suction. Acta Physica Sinica, doi: 10.7498/aps.68.20190684
    [7] Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, doi: 10.7498/aps.68.20190378
    [8] Liu Qiang, Luo Zhen-Bing, Deng Xiong, Yang Sheng-Ke, Jiang Hao. Linear stability of supersonic boundary layer with synthetic cold/hot jet control. Acta Physica Sinica, doi: 10.7498/aps.66.234701
    [9] Lu Chang-Gen, Shen Lu-Yu. Numerical study of leading-edge receptivity on the infinite-thin flat-plat boundary layer. Acta Physica Sinica, doi: 10.7498/aps.65.194701
    [10] Gao Xing-Hui, Tang Dong, Zhang Cheng-Yun, Zheng Hui, Lu Da-Quan, Hu Wei. Nonlocal surface dark solitons and their stability analysis. Acta Physica Sinica, doi: 10.7498/aps.63.024204
    [11] Gao Xing-Hui, Zhang Cheng-Yun, Tang Dong, Zheng Hui, Lu Da-Quan, Hu Wei. Nonlocal dark soliton and its linear stability analysis. Acta Physica Sinica, doi: 10.7498/aps.62.044214
    [12] Cai Shan-Yong, Mei Lei, Peng Hu-Qing, Lu Da-Quan, Hu Wei. The analytical solution and stability of multipole surface soliton in nonlocal nonlinear medium. Acta Physica Sinica, doi: 10.7498/aps.61.154211
    [13] Tang Deng-Bin, Liu Chao-Qun, Chen Lin. New properties of streamwise streaks in transitional boundary layers. Acta Physica Sinica, doi: 10.7498/aps.60.094702
    [14] Zhong Sheng-Ren. Instability and interaction of the nonlinear solitary waves in two-temperature-ion dusty plasma. Acta Physica Sinica, doi: 10.7498/aps.59.2178
    [15] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, doi: 10.7498/aps.57.7390
    [16] Meng Zong, Liu Bin. Stability of equilibrium state of a kind of nonlinear relative rotation dynamic system and associated harmonic approximate solution. Acta Physica Sinica, doi: 10.7498/aps.57.1329
    [17] Wang Yan, Han Xiao-Yan, Ren Hui-Zhi, Hou Guo-Fu, Guo Qun-Chao, Zhu Feng, Zhang De-Kun, Sun Jian, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Stability of mixed phase silicon thin film material under light soaking. Acta Physica Sinica, doi: 10.7498/aps.55.947
    [18] Li Rui-Qu, Li Cun-Biao. . Acta Physica Sinica, doi: 10.7498/aps.51.1743
    [19] Gong An-Long, Li Rui-Qu, Li Cun-Bao. . Acta Physica Sinica, doi: 10.7498/aps.51.1068
    [20] WANG HONG-XIA, YU JUE-BANG. ANALYSIS OF STABILITY FOR EQUILIBRIUM OFCELLULAR NEURAL NETWORKS. Acta Physica Sinica, doi: 10.7498/aps.50.2303
Metrics
  • Abstract views:  225
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2025
  • Accepted Date:  06 April 2025
  • Available Online:  24 April 2025

/

返回文章
返回
Baidu
map