-
Neutron capture cross sections, as important parameters describing the probability of neutron-nucleus reactions, play a key role in multiple scientific fields. In astrophysics, neutron capture cross section data are essential elements for understanding stellar nucleosynthesis processes. In particular, in extreme environments such as supernova explosions and neutron star mergers, accurate neutron capture cross sections can reveal the secrets of heavy element formation. In the field of national security, neutron capture cross sections are crucial for the design of nuclear weapons and the security of nuclear materials. By accurately grasping the neutron capture characteristics of different nuclides, the nuclear reaction process can be optimized to ensure strategic security. In addition, in the simulation of nuclear power generation, neutron capture cross section data are the basis of reactor design and operational analysis. Through in-depth research and precise measurements of neutron capture cross sections, the safety and efficiency of nuclear reactors can be improved, promoting the sustainable development of nuclear energy. At present, there are few studies on neutron capture cross sections of nuclides with half-lives of only a few years or even shorter, mainly due to the complexity of measurement techniques and the instability of the nuclides themselves. The neutron capture cross section data of these nuclides are crucial for reactor design, nuclear medicine applications, and nuclear waste treatment. Further research requires the development of more advanced detection techniques and theoretical models to accurately measure and predict their neutron capture behavior.
The surrogate reaction method, as an effective measurement means, plays an important role in the research of reaction cross sections of short-lived nuclides. Its basic idea is to indirectly obtain the reaction cross section information of short-lived nuclides by measuring the specific particles emitted by stable nuclides. Specifically, when stable nuclides are bombarded by high-energy particles, nuclear reactions will occur and specific particles will be released. By accurately measuring the energy, angle, and number of these particles, the cross section of short-lived nuclides in the corresponding reaction can be inferred. This method can not only overcome the technical difficulties of direct measurement of short-lived nuclides, but also improve the accuracy and reliability of the measurement results, providing important support for nuclear physics research. In addition, the substitute reaction method also shows broad application prospects in the fields of nuclear technology application and nuclear data assessment.
The experiment was carried out on the Beijing HI-13 tandem accelerator at the China Institute of Atomic Energy. 89Y was bombarded with 22 MeV protons, and the 85Sr(n, γ) cross section was measured through the (p, αγ) reaction. The telescope array composed of silicon strip detectors can effectively identify the reaction products. By precisely measuring parameters such as the energy and angle of particles, the array can distinguish different nuclides, thus determining the outgoing particles. Combined with the γ-ray energy spectrum analysis of the HPGe detector, the (n, γ) reaction cross section data of 85Sr under the Weisskopf-Ewing (W-E) approximation were extracted. Due to the mismatch of the Jπ population between the existing alternative reactions and direct reactions, it is necessary to compensate for this mismatch and then correct the results. In order to obtain relatively reliable results, the Jπ population calculated by TALYS was used to revise the experimental data of the (n,γ) cross section.
The results show that the cross section of 85Sr(n, γ) varies with neutron energy in a specific energy range, which is consistent with the trend of the existing international evaluation library data, verifying the effectiveness of the alternative reaction method for cross section measurement. It provides an important experimental basis for further exploring the nuclear reaction mechanism and nuclear data application. This method has reference significance for the cross section measurement of other nuclides.-
Keywords:
- neutron-capture cross section /
- surrogate reaction method /
- short-lived radioactive nuclei
-
[1] Arlandini C, Käppeler F, Wisshak K, Gallino R, Lugaro M, Busso M, Straniero O 1999Astrophys. J. Lett 525 886
[2] Boutoux G, Jurado B, Méot V, Roig O, Mathieu L, Aïche M, Barreau G, Capellan N, Companis I, Czajkowski S, Schmidt K-H, Burke J T, Bail A, Daugas J M, Faul T, More P l, Pillet N, Théroine C, Derkx X, Sérot O, Matéa I, Tassan-Got L 2010Phys. Lett. B 692 297
[3] Arcones A, Bardayan D, Beers T, Bernstein L, Blackmon J, Messer B, Brown B, Brown E, Brune C, Champagne A, Chieffi A, Couture A, Danielewicz P, Diehl R, El-Eid M, Escher J, Fields B, Fröhlich C, Herwig F, Hix W, Iliadis C, Lynch W, McLaughlin G, Meyer B, Mezzacappa A, Nunes F, O'Shea B, Prakash M, Pritychenko B, Reddy S, Rehm E, Rogachev G, Rutledge R 2017Prog Part Nucl Phys 94 1
[4] Mumpower M R, Surman R, McLaughlin G C, Aprahamian A 2015Prog Part Nucl Phys 86 86
[5] H. Schatz 2016J. Phys. G: Nucl. Part. Phys 43 064001
[6] Reifarth R, Litvinov Y. A 2014Phys. Rev. ST Accel. Beams 17 014701
[7] Ratkiewicz A, Cizewski J A, Pain S D, Adekola A S, Burke J T, Casperson R J, Fotiades N, McCleskey M, Burcher S, Shand C M, Austin R A E, Baugher T, Carpenter M P, Devlin M, Escher J, Hardy S, Hatarik R, Howard M E, Hughes R O, Jones K L, Kozub R L, Lister C J, Manning B, O'Donnell J M, Peters W A, Ross T J, Scielzo N D, Seweryniak D, Zhu S 201515th International Symposium on Capture Gamma Ray Spectroscopy and Related Topics Dresden, Germany, Aug 25-2993
[8] Cramer J D, Britt H C 1970Nucl. Sci. Eng. 41 177
[9] Britt H C, Wilhelmy J B 1979Nucl. Sci. Eng. 72 222
[10] Boyer S, Dassié D, Wilson J N, Aïche M, Barreau G, Czajkowski S, Grosjean C, Guiral A, Haas B, Osmanov B, Aerts G, Berthoumieux E, Gunsing F, Theisen Ch, Thiollière N, Perrot L 2006Nucl. Phys. A 775 175
[11] Allmond J, Bernstein L, Beausang C, Phair L, Bleuel D, Burke J, Escher J, Evans K, Goldblum B, Hatarik R, Jeppesen H, Lesher S, Mcmahan M, Rasmussen J, Scielzo N, Wiedeking M 2009Phys. Rev. C 79 054610
[12] MA Nanru, LIN Chengjian, JIA Huiming, XU Xinxing, YANG Feng, YANG Lei, SUN Lijie, WANG Dongxi, LIU Zuhua, ZHANG Huanqiao 2017Nucl. Phys. Rev. 34(3) 351(in Chinese) [马南茹, 林承键, 贾会明, 徐新星, 杨峰, 杨磊, 孙立杰, 王东玺, 刘祖华, 张焕乔2017原子核物理评论34(3) 351]
[13] Yan S Q, Li Z H, Wang Y B, Nishio K, Lugaro M, Karakas A I, Makii H, Mohr P, Su J, Li Y J, Nishinaka I, Hirose K, Han Y L, Orlandi R, Shen Y P, Guo B, Zeng S, Lian G, Chen Y S, Liu W P 2017Astrophys. J. 848 98
[14] Yan S, Li Z H, Wang Y B, Nishio K, Makii H, Su J, Li Y J, Nishinaka I, Hirose K, Han Y L, Orlandi R, Shen Y P, Guo B, Zeng S, Lian G, Chen Y S, Bai X X, Qiao L H, Liu W 2016Phys. Rev. C 94 015804
[15] Yan S Q, Li X Y, Nishio K, Lugaro M, Li Z H, Makii H, Pignatari M, Wang Y B, Orlandi R, Hirose K, Tsukada K, Mohr P, Li G S, Wang J G, Gao B S, Han Y L, Guo B, Li Y J, Shen Y P, Sato T K, Ito Y, Suzaki F, Su J, Yang Y Y, Wang J S, Ma J B, Ma P, Bai Z, Xu S W, Ren J, Fan Q W, Zeng S, Han Z Y, Nan W, Nan W K, Chen C, Lian G, Hu Q, Duan F F, Jin S Y, Tang X D, Liu W P 2021Astrophys. J. 919 84
[16] Escher J, Harke J T, Hughes R O, Scielzo N D, Casperson R J, Ota S, Park H I, Saastamoinen A, Ross T J 2018Phys. Rev. Lett. 121 052501
[17] Hauser W, Feshbach H 1952Phys. Rev. 87 366
[18] Weisskopf V F, Ewing D H 1940Phys. Rev. 57 472
[19] Escher J, Dietrich F. S 2006Phys. Rev. C 74 054601
[20] Chiba S, Iwamoto O 2010Phys. Rev. C 81 044604
[21] Escher J, Harke J T, Dietrich F S, Scielzo N D, Thompson I J, Younes W 2012Rev. Mod. Phys. 84 353
[22] Lesher S R, Phair L, Bernstein L A, Bleuel D L, Harke J T, Church J A, Fallon P, Gibelin J, Scielzo N D, Wiedeking M 2010Nucl. Instrum. Methods Phys. Res., Sect. A 621 286
[23] Hong R, Li C B, Li H D, Zheng Y, Wu X G, Li T X, Li Y Q, Wu H Y, Zheng M, Zhao Z H, He Z Y, Li J Z, Li G S, Guo C Y, Ni L, Zhou Z X, He C Y, Liu F L, Zhou X H, Liu M L, Zhang Y H, Wang S Y, Wang S, Zhu L H 2024Nucl. Phys. Rev 41(1) 244(in Chinese) [洪锐, 李聪博, 李会东, 郑云, 吴晓光, 李天晓, 李韵秋, 吴鸿毅, 郑敏, 赵子豪, 贺子阳, 李金泽, 李广顺, 郭成宇, 倪磊, 周振翔, 贺创业, 刘伏龙, 周小红, 柳敏良, 张玉虎, 王守宇, 王硕, 竺礼华2024原子核物理评论41(1) 244]
[24] Reese M, Gerl J, Golubev P, Pietralla N 2015Nucl. Instrum. Methods Phys. Res., Sect. A 779 63
[25] Tarasov O, Bazin D 2004Nucl. Phys. A 746 411
[26] Koning A J, Hilaire S, Duijvestijn M C 2023Eur. Phys. J. A 59 131
[27] Boutoux G 2011 Ph.D. Dissertation (Bordeaux: University of Bordeaux)
[28] Brun R, Rademakers F, 1997Nucl. Instrum. Methods Phys. Res., Sect. A 389 81
[29] Zhang J S 2002Nucl Sci Eng 142(2) 207
[30] Forssén C, Dietrich F S, Escher J, Hoffman R D, Kelley K 2007 Phys. Rev. C 75 055807
[31] Younes W, Britt H. C 2003Phys. Rev. C 67 024610
[32] Galés S, Hourani E, Fortier S, Laurent H, Maison J M, Schapira J P 1977Nucl. Phys. A 288 221
[33] Hisamochi K, Iwamoto O, Kisanuki A, Budihardjo S,Widodo S, Nohtomi A, Uozumi Y, Sakae T, Matoba M 1993Nucl. Phys. A 564 227
[34] Duhamel-Chretien G, Perrin G, Perrin C, Comparat V V, Gerlic E, Galès S, Massolo C P 1991Phys. Rev. C 43 1115
[35] Duhamel G, Perrin G, Didelez J P, Gerlic E, Langevin-Joliot H, Guillot J, Van de Wiele J 1981J. Phys. G: Nucl. Phys. 7 1415
[36] Hilaire S, Lagrange Ch, Koning A J 2003Ann. Phys. 306 209
Metrics
- Abstract views: 25
- PDF Downloads: 0
- Cited By: 0