-
Memristor, which is a nonlinear resistor with memory function, is the fourth fundamental two-terminal circuit element besides the resistor, capacitor and inductor. A memristor based oscillator circuit, directly derived from Chuas oscillator by replacing Chuas diode with a flux-controlled memristor characterized by a smooth monotonically increasing nonlinearity, is presented in this paper. By using conventional dynamical analysis method, the dynamical behaviors of the new smooth memristor oscillator with the variations of circuit parameters and initial conditions are investigated. The research results demonstrate that the dynamical behavior of the smooth memristor oscillator not only depends on the circuit parameters, but also closely depends on the initial conditions of the circuit. Different from general chaotic systems, some novel nonlinear phenomenas, such as the transient chaos and state transitions and so on, can be found in the proposed system.
-
Keywords:
- memristor oscillator /
- initial condition /
- dynamical behavior /
- transient chaos
[1] [1]Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[2] [2]Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[3] [3]Chua L O, Kang S M 1976 Proc. IEEE 64 209
[4] [4]Tour J M, He T 2008 Nature 453 42
[5] [5]Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183
[6] [6]Liu L, Su Y C, Liu C X 2007 Chin. Phys. B 16 1897
[7] [7]Bao B C, Li C B, Xu J P, Liu Z 2008 Chin. Phys. B 17 4022
[8] [8]Dong E N, Chen Z P, Chen Z Q, Yuan Z Z 2009 Chin. Phys. B 18 2680
[9] [9]Li C B, Wang D C 2009 Acta Phys. Sin. 58 764 (in Chinese)[李春彪、王德纯 2009 58 764]
[10] ]Tang L R, Li J, Fan B, Zhai M Y 2009 Acta Phys. Sin. 58 785 (in Chinese) [唐良瑞、 李静、 樊冰、 翟明岳 2009 58 785]
[11] ]Qiao X H, Bao B C 2009 Acta Phys. Sin. 58 8152 (in Chinese) [乔晓华、 包伯成 2009 58 8152]
[12] ]Dhamala M, Lai Y C, Kostelich E J 2003 Phys. Rev. E 61 055207
[13] ]Yorke J A, Yorke E D 1979 J. Stat. Phys. 21 263
[14] ]Yang H J, Yang J H, Hu G 2007 Phys. Lett. A 365 204
-
[1] [1]Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[2] [2]Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[3] [3]Chua L O, Kang S M 1976 Proc. IEEE 64 209
[4] [4]Tour J M, He T 2008 Nature 453 42
[5] [5]Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183
[6] [6]Liu L, Su Y C, Liu C X 2007 Chin. Phys. B 16 1897
[7] [7]Bao B C, Li C B, Xu J P, Liu Z 2008 Chin. Phys. B 17 4022
[8] [8]Dong E N, Chen Z P, Chen Z Q, Yuan Z Z 2009 Chin. Phys. B 18 2680
[9] [9]Li C B, Wang D C 2009 Acta Phys. Sin. 58 764 (in Chinese)[李春彪、王德纯 2009 58 764]
[10] ]Tang L R, Li J, Fan B, Zhai M Y 2009 Acta Phys. Sin. 58 785 (in Chinese) [唐良瑞、 李静、 樊冰、 翟明岳 2009 58 785]
[11] ]Qiao X H, Bao B C 2009 Acta Phys. Sin. 58 8152 (in Chinese) [乔晓华、 包伯成 2009 58 8152]
[12] ]Dhamala M, Lai Y C, Kostelich E J 2003 Phys. Rev. E 61 055207
[13] ]Yorke J A, Yorke E D 1979 J. Stat. Phys. 21 263
[14] ]Yang H J, Yang J H, Hu G 2007 Phys. Lett. A 365 204
Catalog
Metrics
- Abstract views: 11150
- PDF Downloads: 2137
- Cited By: 0