搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空调制对可激发介质螺旋波波头动力学行为影响及控制研究

钱郁

引用本文:
Citation:

时空调制对可激发介质螺旋波波头动力学行为影响及控制研究

钱郁

The influence of spatiotemporal modulation on spiral tip dynamics in excitable medium and its application for spiral control

Qian Yu
PDF
导出引用
  • 本文首先研究了时空调制对可激发介质中周期螺旋波波头动力学行为的影响. 随着时空调制的增大, 螺旋波经历了周期螺旋波、外滚螺旋波、旅行螺旋波和内滚螺旋波的显著变化. 通过定义序参量来定量的描述由时空调制引起的螺旋波在不同态之间非平衡跃迁的临界条件, 及漫游螺旋波波头圆滚圆半径随调制参数的变化情况. 当时空调制增大到某个临界值时, 螺旋波发生了破碎; 再增加时空调制, 螺旋波则发生了衰减, 系统最终演化为空间均匀静息态. 在文中给出了螺旋波发生破碎和衰减的机理和原因. 最后将时空调制方法运用于漫游螺旋波, 实现了将漫游螺旋波控制成周期螺旋波, 或将其控制为空间均匀静息态.
    In this paper, the influence of spatiotemporal modulation on tip dynamics of periodic spiral wave in excitable medium is studied first. By varying spatiotemporal modulation item, the dynamics of spiral wave changes dramatically and the system undergoes periodic spiral wave, epicycloid meandering spiral wave, traveling spiral wave and hypocycloid meandering spiral wave. An order parameter is introduced to detect the critical conditions of non-equilibrium transition between different patterns. And the variation of spiral tip radius induced by spatiotemporal modulation can also be reflected by this order parameter. When spatiotemporal modulation increases to a critical value, spiral waves break up. And spiral waves will damp to homogeneous rest state if spatiotemporal modulation increases further. The mechanisms of spiral breakup and damping are explained in the paper. Finally we apply the spatiotemporal modulation method to the meandering spiral waves and can successfully control meandering spiral waves into periodic spiral waves or homogeneous rest state.
    • 基金项目: 国家自然科学基金(批准号: 11105003)和陕西省教育厅项目(批准号: 11JK0544)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11105003), and the Science Foundation of the Education Bureau of Shaanxi Province of China (Grant No. 11JK0544).
    [1]

    Walgraef D 1997 Spatio-Temporal Pattern Formation (New York: Springer Verlag)

    [2]

    Winfree A T 1987 When Time Breaks Down (New Jersey: Princeton University Press)

    [3]

    He D H, Shi P L, Stone L W 2003 Phys. Rev. E 67 27201

    [4]

    Perc M 2007 Chaos, Solitons and Fractals 31 280

    [5]

    Wang C N, Ma J, Tang J, Li Y L 2010 Commun Theor Phys. 53 382

    [6]

    Ma J, Wu Y, Ying H P, Jia Y 2011 Chinese Science Bulletin 56 151

    [7]

    Ma J, Wang C N, Jin W Y, Wu Y 2010 Appl. Math. Comput 217 3844

    [8]

    Zaikin A N, Zhabotinsky A M 1970 Nature 225 535

    [9]

    Winfree A T 1972 Science 175 634

    [10]

    Ouyang Q, Flesselles J M 1996 Nature 379 143

    [11]

    Comacho P, Lechleiter J D 1993 Science 260 226

    [12]

    Oss C V, Panfilov A V, Hogeweg P, Siegert F, Weiger C J 1996 J. Theor. Biol. 181 201

    [13]

    Dahlem M A, Müller S C 1997 Exp. Brain Res. 115 319

    [14]

    Callamaras N, Marchant J S, Sun X P 1998 J. Physiol. 509 81

    [15]

    Falcke M 2003 New J. Phys. 5 96

    [16]

    Wolff J, Rotermund H H 2003 New J. Phys. 5 60

    [17]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349

    [18]

    Qu Z L, Kil J, Xie F G, Garfinkel A, Weiss J N 2000 Biophys. J. 78 2761

    [19]

    Kanakov O I, Osipov G V, Chan C, Kurths J 2007 Chaos 17 015111

    [20]

    Huang X D, Qian Y, Zhang X M, Hu G 2010 Phys. Rev. E 81 051903

    [21]

    Aranson I, Levine H, Tsimring L 1994 Phys. Rev. Lett. 72 2561

    [22]

    Rappel W J, Fenton F, Karma A 1999 Phys. Rev. Lett. 83 456

    [23]

    Sinha S, Pande A, Pandit R 2001 Phys. Rev. Lett. 86 3678

    [24]

    Alonso S, Sagues F, Mikhailov A S 2003 Science 299 1722

    [25]

    Zhang H, Hu B, Hu G 2003 Phys. Rev. E 68 026134

    [26]

    Zhang H, Cao Z J, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301

    [27]

    Xiao J H, Hu G, Zhang H, Hu B 2005 Europhys. Lett. 69 29

    [28]

    Qian Y, Song X Y, Shi W, Chen G Z, Xue Y 2006 Acta Phys. Sin. 55 4420 (in Chinese) [钱郁, 宋宣玉, 时伟, 陈光旨, 薛郁 2006 55 4420]

    [29]

    Ma J, Jin W Y, Li Y L, Zheng Y 2007 Acta Phys. Sin. 56 2456 (in Chinese) [马军, 靳伍银, 李延龙, 陈勇 2007 56 2456]

    [30]

    Ma J, Wang C N, Jin W Y, Li Y L, Pu Z S 2008 Chin. Phys. B 17 2844

    [31]

    Chen J X, Xu J R, Yuan X P, Ying H P 2009 J. Phys. Chem. B 113 849

    [32]

    Chen J X, Mao J W, Hu B, Xu J R, He Y F, Li Y, Yuan X P 2009 Phys. Rev. E 79 066209

    [33]

    Winfree A T 1973 Science 181 937

    [34]

    Ouyang Q, Swinney H L, Li G 2000 Phys. Rev. Lett. 84 1047

    [35]

    Barkley D, Kness M, Tuckerman L 1990 Phys. Rev. A 42 2489

    [36]

    Aliev R R, Panfilov A V 1996 Chaos, Solitions and Fractals 7 293

    [37]

    Barkley D 1992 Phys. Rev. Lett. 68 2090

    [38]

    Barkley D 1994 Phys. Rev. Lett. 72 164

  • [1]

    Walgraef D 1997 Spatio-Temporal Pattern Formation (New York: Springer Verlag)

    [2]

    Winfree A T 1987 When Time Breaks Down (New Jersey: Princeton University Press)

    [3]

    He D H, Shi P L, Stone L W 2003 Phys. Rev. E 67 27201

    [4]

    Perc M 2007 Chaos, Solitons and Fractals 31 280

    [5]

    Wang C N, Ma J, Tang J, Li Y L 2010 Commun Theor Phys. 53 382

    [6]

    Ma J, Wu Y, Ying H P, Jia Y 2011 Chinese Science Bulletin 56 151

    [7]

    Ma J, Wang C N, Jin W Y, Wu Y 2010 Appl. Math. Comput 217 3844

    [8]

    Zaikin A N, Zhabotinsky A M 1970 Nature 225 535

    [9]

    Winfree A T 1972 Science 175 634

    [10]

    Ouyang Q, Flesselles J M 1996 Nature 379 143

    [11]

    Comacho P, Lechleiter J D 1993 Science 260 226

    [12]

    Oss C V, Panfilov A V, Hogeweg P, Siegert F, Weiger C J 1996 J. Theor. Biol. 181 201

    [13]

    Dahlem M A, Müller S C 1997 Exp. Brain Res. 115 319

    [14]

    Callamaras N, Marchant J S, Sun X P 1998 J. Physiol. 509 81

    [15]

    Falcke M 2003 New J. Phys. 5 96

    [16]

    Wolff J, Rotermund H H 2003 New J. Phys. 5 60

    [17]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349

    [18]

    Qu Z L, Kil J, Xie F G, Garfinkel A, Weiss J N 2000 Biophys. J. 78 2761

    [19]

    Kanakov O I, Osipov G V, Chan C, Kurths J 2007 Chaos 17 015111

    [20]

    Huang X D, Qian Y, Zhang X M, Hu G 2010 Phys. Rev. E 81 051903

    [21]

    Aranson I, Levine H, Tsimring L 1994 Phys. Rev. Lett. 72 2561

    [22]

    Rappel W J, Fenton F, Karma A 1999 Phys. Rev. Lett. 83 456

    [23]

    Sinha S, Pande A, Pandit R 2001 Phys. Rev. Lett. 86 3678

    [24]

    Alonso S, Sagues F, Mikhailov A S 2003 Science 299 1722

    [25]

    Zhang H, Hu B, Hu G 2003 Phys. Rev. E 68 026134

    [26]

    Zhang H, Cao Z J, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301

    [27]

    Xiao J H, Hu G, Zhang H, Hu B 2005 Europhys. Lett. 69 29

    [28]

    Qian Y, Song X Y, Shi W, Chen G Z, Xue Y 2006 Acta Phys. Sin. 55 4420 (in Chinese) [钱郁, 宋宣玉, 时伟, 陈光旨, 薛郁 2006 55 4420]

    [29]

    Ma J, Jin W Y, Li Y L, Zheng Y 2007 Acta Phys. Sin. 56 2456 (in Chinese) [马军, 靳伍银, 李延龙, 陈勇 2007 56 2456]

    [30]

    Ma J, Wang C N, Jin W Y, Li Y L, Pu Z S 2008 Chin. Phys. B 17 2844

    [31]

    Chen J X, Xu J R, Yuan X P, Ying H P 2009 J. Phys. Chem. B 113 849

    [32]

    Chen J X, Mao J W, Hu B, Xu J R, He Y F, Li Y, Yuan X P 2009 Phys. Rev. E 79 066209

    [33]

    Winfree A T 1973 Science 181 937

    [34]

    Ouyang Q, Swinney H L, Li G 2000 Phys. Rev. Lett. 84 1047

    [35]

    Barkley D, Kness M, Tuckerman L 1990 Phys. Rev. A 42 2489

    [36]

    Aliev R R, Panfilov A V 1996 Chaos, Solitions and Fractals 7 293

    [37]

    Barkley D 1992 Phys. Rev. Lett. 68 2090

    [38]

    Barkley D 1994 Phys. Rev. Lett. 72 164

  • [1] 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制.  , 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [2] 李倩昀, 黄志精, 唐国宁. 通过抑制波头旋转消除心脏中的螺旋波和时空混沌.  , 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [3] 王小艳, 汪芃, 李倩昀, 唐国宁. 用晚钠电流终止心脏中的螺旋波和时空混沌.  , 2017, 66(13): 138201. doi: 10.7498/aps.66.138201
    [4] 潘飞, 王小艳, 汪芃, 黎维新, 唐国宁. 通过放慢钠通道开闭控制心脏中的螺旋波和时空混沌.  , 2016, 65(19): 198201. doi: 10.7498/aps.65.198201
    [5] 潘飞, 黎维新, 王小艳, 唐国宁. 用低通滤波方法终止心脏组织中的螺旋波和时空混沌.  , 2015, 64(21): 218202. doi: 10.7498/aps.64.218202
    [6] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化.  , 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [7] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究.  , 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [8] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌.  , 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [9] 钱郁. 时空调制引起的漫游螺旋波与旅行螺旋波共存现象.  , 2013, 62(5): 058201. doi: 10.7498/aps.62.058201
    [10] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步.  , 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [11] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究.  , 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [12] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波.  , 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [13] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌.  , 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [14] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究.  , 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [15] 韦海明, 唐国宁. 交替行为对螺旋波影响的数值模拟研究.  , 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [16] 钟敏, 唐国宁. 用钙离子通道激动剂抑制心脏组织中的螺旋波和时空混沌.  , 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [17] 钟敏, 唐国宁. 局域反馈抑制心脏中的螺旋波和时空混沌.  , 2010, 59(3): 1593-1599. doi: 10.7498/aps.59.1593
    [18] 甘正宁, 马 军, 张国勇, 陈 勇. 小世界网络上螺旋波失稳的研究.  , 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [19] 马 军, 靳伍银, 李延龙, 陈 勇. 随机相位扰动抑制激发介质中漂移的螺旋波.  , 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
    [20] 马 军, 蒲忠胜, 冯旺军, 李维学. 旋转中心力场消除螺旋波和时空混沌.  , 2005, 54(10): 4602-4609. doi: 10.7498/aps.54.4602
计量
  • 文章访问数:  6802
  • PDF下载量:  472
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-23
  • 修回日期:  2011-12-31
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map