Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Implementation of a new chaotic system based on field programmable gate array

Shao Shu-Yi Min Fu-Hong Wu Xue-Hong Zhang Xin-Guo

Citation:

Implementation of a new chaotic system based on field programmable gate array

Shao Shu-Yi, Min Fu-Hong, Wu Xue-Hong, Zhang Xin-Guo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A new five-dimensional modified Chua’s system is proposed and its dynamic properties are investigated through numerical simulations, the stabilization of equilibrium points, bifurcation diagrams, and Lyapunov exponent spectrum. The different dynamic behaviors of the new system are analyzed with system parameters changed. Based on the mathematical model of the new system and the digital processing technology, the five-dimensional modified Chua’s system is discretized. According to IEEE-754 standard and module-based design idea, basic floating-point operational modules are designed. Furthermore, the chaotic attractors of the five-dimensional modified Chua’s system are realized by field programmable gate array. The investigation results show that the chaotic system is different from the existing chaotic systems. It also shows a good agreement between numerical simulation and hardware implementation, which proves the existence and realizability of the new chaotic system.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51075275), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131402), the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, China (Grant No. 20121707), and the "Summit of the Six Top Talents" Program of Jiangsu Province, China.
    [1]

    Chen G, Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)

    [2]

    Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465

    [3]

    L J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659

    [4]

    Yu F, Wang C H, Yin J W, Xu H 2012 Acta Phys. Sin. 61 020506 (in Chinese) [余飞, 王春华, 尹晋文, 徐浩 2012 61 020506]

    [5]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos Solition. Fract. 22 1031

    [6]

    Luo M W, Luo X H, Li H Q 2013 Acta Phys. Sin. 62 020512 (in Chinese) [罗明伟, 罗小华, 李华青 2013 62 020512]

    [7]

    Shao S Y, Min F H, Ma M L, Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese) [邵书义, 闵富红, 马美玲, 王恩荣 2013 62 130504]

    [8]

    Hua C C, Yang B, Ouyang G X, Guan X P 2005 Phys. Lett. A 342 305

    [9]

    Wang Z, Huang X, Li Y X, Song X N 2013 Chin. Phys. B 22 010504

    [10]

    Guan Z H, Huang F J, Guan W J 2005 Phys. Lett. A 346 153

    [11]

    Wang X Y, Luan D P 2013 Commun. Nonlin. Sci. Numer. Simulat. 18 3075

    [12]

    Jin J 2012 Opt. Lasers Eng. 50 1836

    [13]

    Zhou X Y 2012 Acta Phys. Sin. 61 030504 (in Chinese) [周小勇 2012 61 030504]

    [14]

    Li C L, Yu S M, Luo X S 2012 Acta Phys. Sin. 61 110502 (in Chinese) [李春来, 禹思敏, 罗晓曙 2012 61 110502]

    [15]

    Feng C W, Cai L, Kang Q, Zhang L S 2011 Acta Phys. Sin. 60 030503 (in Chinese) [冯朝文, 蔡理, 康强, 张立森 2011 60 030503]

    [16]

    Wang G Y, Qiu S S, Li H W, Li C F, Zheng Y 2006 Chin. Phys. 15 2872

    [17]

    Kim D, Chang P H, Kim S H 2013 Nonlin. Dyn. 73 1883

    [18]

    Abooee A, Yaghini-Bonabi H A, Jahed-Motlagh M R 2013 Commun. Nonlin. Sci. Numer. Simulat. 18 1235

    [19]

    Liu Q, Fang J Q, Zhao G, Li Y 2012 Acta Phys. Sin. 61 130508 (in Chinese) [刘强, 方锦清, 赵耿, 李永 2012 61 130508]

    [20]

    Azzaz M S, Tanougast C, Sadoudi S, Fellah R, Dandache A 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1792

    [21]

    Wang Z L 2008 Comput. Eng. Appl. 44 84 (in Chinese) [王忠林 2008 计算机工程与应用 44 84]

    [22]

    Wang Z L, Wang G Y 2009 Comput. Eng. Des. 30 3365 (in Chinese) [王忠林, 王光义 2009 计算机工程与设计 30 3365]

    [23]

    Wang G Y, Bao X L, Wang Z L 2008 Chin. Phys. B 17 3596

    [24]

    Zhou W J, Yu S M 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰, 禹思敏 2009 58 113]

    [25]

    Zhou W J, Yu S M 2008 Acta Phys. Sin. 57 4738 (in Chinese) [周武杰, 禹思敏 2008 57 4738]

    [26]

    Yin Y Z 1996 Int. J. Bifurc. Chaos 6 2101

  • [1]

    Chen G, Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)

    [2]

    Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465

    [3]

    L J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659

    [4]

    Yu F, Wang C H, Yin J W, Xu H 2012 Acta Phys. Sin. 61 020506 (in Chinese) [余飞, 王春华, 尹晋文, 徐浩 2012 61 020506]

    [5]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos Solition. Fract. 22 1031

    [6]

    Luo M W, Luo X H, Li H Q 2013 Acta Phys. Sin. 62 020512 (in Chinese) [罗明伟, 罗小华, 李华青 2013 62 020512]

    [7]

    Shao S Y, Min F H, Ma M L, Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese) [邵书义, 闵富红, 马美玲, 王恩荣 2013 62 130504]

    [8]

    Hua C C, Yang B, Ouyang G X, Guan X P 2005 Phys. Lett. A 342 305

    [9]

    Wang Z, Huang X, Li Y X, Song X N 2013 Chin. Phys. B 22 010504

    [10]

    Guan Z H, Huang F J, Guan W J 2005 Phys. Lett. A 346 153

    [11]

    Wang X Y, Luan D P 2013 Commun. Nonlin. Sci. Numer. Simulat. 18 3075

    [12]

    Jin J 2012 Opt. Lasers Eng. 50 1836

    [13]

    Zhou X Y 2012 Acta Phys. Sin. 61 030504 (in Chinese) [周小勇 2012 61 030504]

    [14]

    Li C L, Yu S M, Luo X S 2012 Acta Phys. Sin. 61 110502 (in Chinese) [李春来, 禹思敏, 罗晓曙 2012 61 110502]

    [15]

    Feng C W, Cai L, Kang Q, Zhang L S 2011 Acta Phys. Sin. 60 030503 (in Chinese) [冯朝文, 蔡理, 康强, 张立森 2011 60 030503]

    [16]

    Wang G Y, Qiu S S, Li H W, Li C F, Zheng Y 2006 Chin. Phys. 15 2872

    [17]

    Kim D, Chang P H, Kim S H 2013 Nonlin. Dyn. 73 1883

    [18]

    Abooee A, Yaghini-Bonabi H A, Jahed-Motlagh M R 2013 Commun. Nonlin. Sci. Numer. Simulat. 18 1235

    [19]

    Liu Q, Fang J Q, Zhao G, Li Y 2012 Acta Phys. Sin. 61 130508 (in Chinese) [刘强, 方锦清, 赵耿, 李永 2012 61 130508]

    [20]

    Azzaz M S, Tanougast C, Sadoudi S, Fellah R, Dandache A 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1792

    [21]

    Wang Z L 2008 Comput. Eng. Appl. 44 84 (in Chinese) [王忠林 2008 计算机工程与应用 44 84]

    [22]

    Wang Z L, Wang G Y 2009 Comput. Eng. Des. 30 3365 (in Chinese) [王忠林, 王光义 2009 计算机工程与设计 30 3365]

    [23]

    Wang G Y, Bao X L, Wang Z L 2008 Chin. Phys. B 17 3596

    [24]

    Zhou W J, Yu S M 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰, 禹思敏 2009 58 113]

    [25]

    Zhou W J, Yu S M 2008 Acta Phys. Sin. 57 4738 (in Chinese) [周武杰, 禹思敏 2008 57 4738]

    [26]

    Yin Y Z 1996 Int. J. Bifurc. Chaos 6 2101

  • [1] Quan Xu, Qiu Da, Sun Zhi-Peng, Zhang Gui-Zhong, Liu Song. Dynamic analysis and FPGA implementation of a fourth-order chaotic system with coexisting attractor. Acta Physica Sinica, 2023, 72(19): 190502. doi: 10.7498/aps.72.20230795
    [2] Lin Yi,  Liu Wen-Bo,  Shen Qian. Bi-stability in a fifth-order voltage-controlled memristor-based Chua's chaotic circuit. Acta Physica Sinica, 2018, 67(23): 230502. doi: 10.7498/aps.67.20181283
    [3] Wang Chun-Ni, Wang Ya, Ma Jun. Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica, 2016, 65(24): 240501. doi: 10.7498/aps.65.240501
    [4] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [5] Wang Zhen, Sun Wei. Dynamics analysis and synchronization of T chaotic system with its circuit simulation. Acta Physica Sinica, 2013, 62(2): 020511. doi: 10.7498/aps.62.020511
    [6] Xu Bi-Rong. A simplest parallel chaotic system of memristor. Acta Physica Sinica, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [7] Li Chun-Lai, Yu Si-Min, Luo Xiao-Shu. A new chaotic system and its implementation. Acta Physica Sinica, 2012, 61(11): 110502. doi: 10.7498/aps.61.110502
    [8] Liu Zhong, Wu Hua-Gan, Bao Bo-Cheng. Scroll number and distribution control of attractor: system design and circuit realization. Acta Physica Sinica, 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [9] Liu Yang-Zheng, Lin Chang-Sheng, Li Xin-Chao. A new smooth quadratic chaotic system and its digital signal processing implementation. Acta Physica Sinica, 2011, 60(6): 060507. doi: 10.7498/aps.60.060507
    [10] Bao Bo-Cheng, Liu Zhong, Xu Jian-Ping. Dynamical analysis of memristor chaotic oscillator. Acta Physica Sinica, 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
    [11] Li Jian-Fen, Li Nong, Liu Yu-Ping, Gan Yi. Linear and nonlinear generalized synchronization of a class of chaotic systems by using a single driving variable. Acta Physica Sinica, 2009, 58(2): 779-784. doi: 10.7498/aps.58.779
    [12] Zhang Qi-Chang, Tian Rui-Lan, Wang Wei. Chaotic properties of mechanically and electrically coupled nonlinear dynamical systems. Acta Physica Sinica, 2008, 57(5): 2799-2804. doi: 10.7498/aps.57.2799
    [13] A hyperchaotic system and its fractional order circuit simulation. Acta Physica Sinica, 2007, 56(12): 6865-6873. doi: 10.7498/aps.56.6865
    [14] Zhou Ping. Synchronization for a class of chaotic systems via scalar controller. Acta Physica Sinica, 2007, 56(7): 3777-3781. doi: 10.7498/aps.56.3777
    [15] Hu Ai-Hua, Xu Zhen-Yuan. Linear generalized synchronization of chaotic systems by using white noise. Acta Physica Sinica, 2007, 56(6): 3132-3136. doi: 10.7498/aps.56.3132
    [16] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Xiong Xing, Shi Lei. A class of switchable 3D chaotic systems. Acta Physica Sinica, 2007, 56(6): 3107-3112. doi: 10.7498/aps.56.3107
    [17] Liu Ling, Su Yan-Chen, Liu Chong-Xin. A new chaotic system and its circuit simulation. Acta Physica Sinica, 2007, 56(4): 1966-1970. doi: 10.7498/aps.56.1966
    [18] Liu Ling, Su Yan-Chen, Liu Chong-Xin. A new chaotic system and its circuit emulation. Acta Physica Sinica, 2006, 55(8): 3933-3937. doi: 10.7498/aps.55.3933
    [19] Li Shi-Hua, Cai Hai-Xing. Research on circuitry realization and synchronization of Chen chaotic systems. Acta Physica Sinica, 2004, 53(6): 1687-1693. doi: 10.7498/aps.53.1687
    [20] FENG PEI-CHENG, TANG YI. A SINGULAR PERTURBATION THEORY FOR THE STUDY OF NEWTONIAN DYNAMICAL BEHAVIOUR OF KINK. Acta Physica Sinica, 2001, 50(7): 1213-1216. doi: 10.7498/aps.50.1213
Metrics
  • Abstract views:  6753
  • PDF Downloads:  590
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2013
  • Accepted Date:  03 December 2013
  • Published Online:  05 March 2014

/

返回文章
返回
Baidu
map