-
六角晶系磁铅石型(M型)锶铁氧体因其独特的磁性、介电性能和热稳定性,在永磁材料领域备受关注。但相比于稀土永磁Nd2Fe14B材料来说,M型锶铁氧体(SrFe12O19)永磁材料的综合磁性能较低,这极大的限制了其使用范围。本文基于密度泛函理论(DFT)的第一性原理计算方法,结合广义梯度近似(GGA+U),系统研究了Ca-Co(Zn)共掺杂对M型锶铁氧体的电子结构、力学性能、导电性和磁性能的影响。计算结果表明,Ca-Co(Zn)共掺杂SrFe12O19铁氧体均具有良好的结构稳定性和力学性能。Ca-Zn共掺杂可以使体系导电性增强,这是因为二价Zn离子取代了4f1晶位的三价Fe离子。同时,Ca-Co(Zn)共掺杂使体系的总磁矩增大,磁晶各向异性能下降,但相比于Co和Zn单掺杂体系,磁晶各向异性能有所改善。这表明,Ca-Co(Zn)共掺杂能够有效提高M型锶铁氧体的磁性能,并具备节约成本和环保的优点。M-type strontium ferrite has attracted widespread attention in the field of permanent magnet materials due to its unique magnetic properties, dielectric performance, and thermal stability. However, compared with rare-earth permanent magnets such as Nd2Fe14B, strontium ferrite (SrFe12O19) permanent magnets possess relatively lower comprehensive magnetic properties, which limits their application range. The effects of Ca-Co (Zn) doping on the electronic structure, mechanical properties, and magnetic properties of M-type strontium ferrite are systematically investigated by first-principles plane-wave pseudopotential method based on density functional theory (DFT), combined with the generalized gradient approximation (GGA + U) in the paper. The calculated results indicate that the Ca-Co (Zn) co-doped M-type strontium ferrite systems exhibit good structural stability and mechanical properties. In the Ca-Zn co-doped structures, the conductivity of the system is enhanced because of the substitution of trivalent Fe ions at the 4f1 site by divalent Zn ions. The Ca-Co (Zn) co-doping increases the total magnetic moment of the system, while the magnetocrystalline anisotropy energy decreases. However, compared with the Co and Zn single doping system, the magnetocrystalline anisotropy energy of the co-doped systems has been improved, indicating that Ca-Co (Zn) co-doping can effectively enhance the magnetic properties of strontium ferrite. The study also analyzed the mechanisms of the effect of Ca-Co and Ca-Zn co-doping on the magnetocrystalline anisotropy energy of strontium ferrite. The results indicated that the decrease in magnetocrystalline anisotropy energy in the Ca-Co co-doped system was mainly due to the influence of dxy and dx2-y2 orbital electrons of Co3+ ion and dxy and dx2-y2 orbital electrons of Fe ions at the 2b site. In the Ca-Zn co-doped system, the reduction was mainly influenced by Fe-3d orbitals at the 4f1 site, while the dxy and dx2-y2 orbital electrons of the 2b site enhance the magnetocrystalline anisotropy energy of the system. These results provide theoretical guidance for subsequent research on the modification of M-type strontium ferrite.
-
[1] Hu J W, Wu Y X, He J Y, Liu Z W 2023 Eng. Anal. Boundary Elem. 156 144
[2] Hu Z M, Stenning G B G, Koval V, Wu J Y, Yang B, Leavesley A, Wylde R, Reece M J, Jia C L, Yan H X 2022 ACS Appl. Mater. Interfaces 14 46123
[3] Vidal J V, Fonte T, Lopes L S, Bernardo R, Carneiro P, Pires D G, Dos Santos M S 2024 Appl. Energy 376 124302
[4] Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294
[5] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821
[6] Pullar R C 2012 Prog. Mater Sci. 57 1191
[7] Fernández C, Sangregorio C, Figuera J, Belec B, Makovec D, Quesada A 2021 J. Phys. D: Appl. Phys. 54 153001
[8] Granados-Miralles C, Jenu P 2021 J. Phys. D: Appl. Phys. 54 303001
[9] Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294
[10] Díaz-Pardo R, Bierlich S, Töpfer J, Monjaras R V 2016 AIP Adv. 6 1191
[11] Luo H, Rai B K, Mishra S R, Nguyen V V, Liu J P 2012 J. Magn. Magn. Mater. 324 2602
[12] Huang F, Liu X, Niu X, Ma Y, Huang X, Lv F, Feng S, Zhang Z 2015 Mater. Technol. 30 301
[13] Anantharamaiah P N, Chandra N S, Shashanka H M, Kumar R, Sahoo B 2020 Adv. Powder Technol. 31 2385
[14] Ashiq M N, Iqbal M, Najam-Ul-Haq M, Gomez P, Qureshi A M 2012 J. Magn. Magn. Mater. 324 15
[15] Zhang W J, Bai Y, Han X, Wang L, Lu X F, Qiao L J 2013 J. Alloys Compd. 546 234
[16] Zhou Z P, Wang Z Y, Wang X T, Li Q, Jin M, Xu J Y 2015 J. Supercond. Novel Magn. 28 1773
[17] Nguyen H H, Tran N, Phan T L, Yang D S, Dang N T, Lee B W 2020 Ceram. Int. 46 19506
[18] Nguyen H H, Jeong W H, Phan T L, Lee B W, Yang D S, Tran N, Dang N T 2021 J. Magn. Magn. Mater. 537 168
[19] Hu C X, Cao H L, Wang S Y, Wu N N, Qiu S, Lyu H L, Li J R 2017 New J. Chem. 41 6427
[20] Tuyen N L, Hue N T, Tho P T, Toan H N, Xuan C T A, Dang N V, Ho T A, Tuan N Q, Tran N 2024 J. Sci.: Adv. Mater. Devices 9 2468
[21] Li X, Yang W G, Bao D X, Meng X D, Lou B Y, Yang W G, Bao D X, Meng X D, Lou B Y 2013 J. Magn. Magn. Mater. 329 1
[22] Anbarasu V, Gazzali P M M, Karthik T, Manigandan A, Sivakumar K 2013 J. Mater. Sci.: Mater. Electron. 24 916
[23] Patel C D, Dhruv P N, Meena S S, Singh C, Kavita S, Ellouze M, Jotania R B 2020 Ceram. Int. 46 24816
[24] Kresse G, Furthmüller J 1996 Comput. Mater. Sci 6 15
[25] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[26] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Hou Y H, Chen X, Guo X L, Li W, Huang Y L, Tao X M 2021 J. Magn. Magn. Mater. 538 168257
[28] Fei Z, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121
[29] Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943
[30] Abdelouahed S, Alouani M 2009 Phys. Rev. B 79 054406
[31] Li Y Y, Li G D 1978 Ferrite Physics (1st Ed.) (Beijing: Science Press) pp34-36 (in Chinese) [李荫远, 李国栋 1978 铁氧体物理学(第一版) (北京:科学出版社) 第34-36页]
[32] Fang C M, Kools F, Metselaar R, WithG D, Groot R A D 2003 J. Phys.: Condens. Matter 15 6229
[33] Nemrava S, Vinnik D A, Hu Z, Valldor M, Kuo C Y, Zherebtsov A D, Gudkova S A, Chen C T, Tjeng L H, Niewa R 2017 Inorg. Chem. 56 3861
[34] Bavarsiha F, Montazeri-Pour M, Rajabi M 2020 J. Inorg. Organomet. Polym. Mater. 30 2386
[35] Zhang Z Y, Liu X, Wang X J, Wu Y P, Li R 2012 J. Alloys Compd. 525 114
[36] Lechevallier L, Breton J M L, Wang J F, Harris I R 2004 J. Phys.: Condens. Matter 16 5359
[37] Wagner T R 1997 J. Solid State Chem. 136 120
[38] Fang Q, Cheng H, Huang K, Wang J, Li R, Jiao Y 2005 J. Magn. Magn Mater. 294 281
[39] Banihashemi V, Ghazi M E, Izadifard M 2021 Physica B 605 412670
[40] Buerger M J 1961 Z. Kristallogr. 115 319
[41] Liu Y, Li R, Qing Y C 2024 Mater. Res. Bull. 172 112661
[42] Banihashemi V, Ghazi M E, Izadifard M 2012 Physica B 605 412670
[43] Hill R 1952 Proc. Phys. Soc. A 65 349
[44] Gao J, Liu Q J, Jang C L 2022 Chin. J. High. Pressure phys. 36 1
[45] Zhu L, Zeng Y R, Wen J, Wen J, Li L, Cheng T M 2018 Electrochim. Acta. 292 190
[46] Pugh S F 1954 Lond.Edinb.Phil.Mag. 367 823
[47] Morita A, Frood D G 1978 J. Phys. D: Appl. Phys. 11 2409
[48] Han Z Q 2010 Ferrite and its Magnetic Physics (Beijing: Aviation Industry Press) p20 (in Chinese) [韩志全 2010 铁氧体及其磁性物理(北京:航空工业出版社)第20页]
[49] Jang Y W 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [蒋有为 2020 博士学位论文(成都:电子科技大学)]
[50] Steinbeck L, Richter M, Eschrig H 2001 J. Magn. Magn. Mater. 226 1011
计量
- 文章访问数: 201
- PDF下载量: 3
- 被引次数: 0