搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ca-Co (Zn)共掺杂对M型锶铁氧体性能影响的第一性原理计算研究

李昕语 侯育花 陈璇 黄有林 李伟 陶小马

引用本文:
Citation:

Ca-Co (Zn)共掺杂对M型锶铁氧体性能影响的第一性原理计算研究

李昕语, 侯育花, 陈璇, 黄有林, 李伟, 陶小马

The effects of Ca-Co (Zn) co-doping on the properties of M-type strontium ferrite: a first-principles study

LI Xinyu, HOU Yuhua, CHEN Xuan, HUANG Youlin, LI Wei, TAO Xiaoma
PDF
导出引用
  • 六角晶系磁铅石型(M型)锶铁氧体因其独特的磁性、介电性能和热稳定性,在永磁材料领域备受关注。但相比于稀土永磁Nd2Fe14B材料来说,M型锶铁氧体(SrFe12O19)永磁材料的综合磁性能较低,这极大的限制了其使用范围。本文基于密度泛函理论(DFT)的第一性原理计算方法,结合广义梯度近似(GGA+U),系统研究了Ca-Co(Zn)共掺杂对M型锶铁氧体的电子结构、力学性能、导电性和磁性能的影响。计算结果表明,Ca-Co(Zn)共掺杂SrFe12O19铁氧体均具有良好的结构稳定性和力学性能。Ca-Zn共掺杂可以使体系导电性增强,这是因为二价Zn离子取代了4f1晶位的三价Fe离子。同时,Ca-Co(Zn)共掺杂使体系的总磁矩增大,磁晶各向异性能下降,但相比于Co和Zn单掺杂体系,磁晶各向异性能有所改善。这表明,Ca-Co(Zn)共掺杂能够有效提高M型锶铁氧体的磁性能,并具备节约成本和环保的优点。
    M-type strontium ferrite has attracted widespread attention in the field of permanent magnet materials due to its unique magnetic properties, dielectric performance, and thermal stability. However, compared with rare-earth permanent magnets such as Nd2Fe14B, strontium ferrite (SrFe12O19) permanent magnets possess relatively lower comprehensive magnetic properties, which limits their application range. The effects of Ca-Co (Zn) doping on the electronic structure, mechanical properties, and magnetic properties of M-type strontium ferrite are systematically investigated by first-principles plane-wave pseudopotential method based on density functional theory (DFT), combined with the generalized gradient approximation (GGA + U) in the paper. The calculated results indicate that the Ca-Co (Zn) co-doped M-type strontium ferrite systems exhibit good structural stability and mechanical properties. In the Ca-Zn co-doped structures, the conductivity of the system is enhanced because of the substitution of trivalent Fe ions at the 4f1 site by divalent Zn ions. The Ca-Co (Zn) co-doping increases the total magnetic moment of the system, while the magnetocrystalline anisotropy energy decreases. However, compared with the Co and Zn single doping system, the magnetocrystalline anisotropy energy of the co-doped systems has been improved, indicating that Ca-Co (Zn) co-doping can effectively enhance the magnetic properties of strontium ferrite. The study also analyzed the mechanisms of the effect of Ca-Co and Ca-Zn co-doping on the magnetocrystalline anisotropy energy of strontium ferrite. The results indicated that the decrease in magnetocrystalline anisotropy energy in the Ca-Co co-doped system was mainly due to the influence of dxy and dx2-y2 orbital electrons of Co3+ ion and dxy and dx2-y2 orbital electrons of Fe ions at the 2b site. In the Ca-Zn co-doped system, the reduction was mainly influenced by Fe-3d orbitals at the 4f1 site, while the dxy and dx2-y2 orbital electrons of the 2b site enhance the magnetocrystalline anisotropy energy of the system. These results provide theoretical guidance for subsequent research on the modification of M-type strontium ferrite.
  • [1]

    Hu J W, Wu Y X, He J Y, Liu Z W 2023 Eng. Anal. Boundary Elem. 156 144

    [2]

    Hu Z M, Stenning G B G, Koval V, Wu J Y, Yang B, Leavesley A, Wylde R, Reece M J, Jia C L, Yan H X 2022 ACS Appl. Mater. Interfaces 14 46123

    [3]

    Vidal J V, Fonte T, Lopes L S, Bernardo R, Carneiro P, Pires D G, Dos Santos M S 2024 Appl. Energy 376 124302

    [4]

    Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294

    [5]

    Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821

    [6]

    Pullar R C 2012 Prog. Mater Sci. 57 1191

    [7]

    Fernández C, Sangregorio C, Figuera J, Belec B, Makovec D, Quesada A 2021 J. Phys. D: Appl. Phys. 54 153001

    [8]

    Granados-Miralles C, Jenu P 2021 J. Phys. D: Appl. Phys. 54 303001

    [9]

    Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294

    [10]

    Díaz-Pardo R, Bierlich S, Töpfer J, Monjaras R V 2016 AIP Adv. 6 1191

    [11]

    Luo H, Rai B K, Mishra S R, Nguyen V V, Liu J P 2012 J. Magn. Magn. Mater. 324 2602

    [12]

    Huang F, Liu X, Niu X, Ma Y, Huang X, Lv F, Feng S, Zhang Z 2015 Mater. Technol. 30 301

    [13]

    Anantharamaiah P N, Chandra N S, Shashanka H M, Kumar R, Sahoo B 2020 Adv. Powder Technol. 31 2385

    [14]

    Ashiq M N, Iqbal M, Najam-Ul-Haq M, Gomez P, Qureshi A M 2012 J. Magn. Magn. Mater. 324 15

    [15]

    Zhang W J, Bai Y, Han X, Wang L, Lu X F, Qiao L J 2013 J. Alloys Compd. 546 234

    [16]

    Zhou Z P, Wang Z Y, Wang X T, Li Q, Jin M, Xu J Y 2015 J. Supercond. Novel Magn. 28 1773

    [17]

    Nguyen H H, Tran N, Phan T L, Yang D S, Dang N T, Lee B W 2020 Ceram. Int. 46 19506

    [18]

    Nguyen H H, Jeong W H, Phan T L, Lee B W, Yang D S, Tran N, Dang N T 2021 J. Magn. Magn. Mater. 537 168

    [19]

    Hu C X, Cao H L, Wang S Y, Wu N N, Qiu S, Lyu H L, Li J R 2017 New J. Chem. 41 6427

    [20]

    Tuyen N L, Hue N T, Tho P T, Toan H N, Xuan C T A, Dang N V, Ho T A, Tuan N Q, Tran N 2024 J. Sci.: Adv. Mater. Devices 9 2468

    [21]

    Li X, Yang W G, Bao D X, Meng X D, Lou B Y, Yang W G, Bao D X, Meng X D, Lou B Y 2013 J. Magn. Magn. Mater. 329 1

    [22]

    Anbarasu V, Gazzali P M M, Karthik T, Manigandan A, Sivakumar K 2013 J. Mater. Sci.: Mater. Electron. 24 916

    [23]

    Patel C D, Dhruv P N, Meena S S, Singh C, Kavita S, Ellouze M, Jotania R B 2020 Ceram. Int. 46 24816

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci 6 15

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Hou Y H, Chen X, Guo X L, Li W, Huang Y L, Tao X M 2021 J. Magn. Magn. Mater. 538 168257

    [28]

    Fei Z, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121

    [29]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [30]

    Abdelouahed S, Alouani M 2009 Phys. Rev. B 79 054406

    [31]

    Li Y Y, Li G D 1978 Ferrite Physics (1st Ed.) (Beijing: Science Press) pp34-36 (in Chinese) [李荫远, 李国栋 1978 铁氧体物理学(第一版) (北京:科学出版社) 第34-36页]

    [32]

    Fang C M, Kools F, Metselaar R, WithG D, Groot R A D 2003 J. Phys.: Condens. Matter 15 6229

    [33]

    Nemrava S, Vinnik D A, Hu Z, Valldor M, Kuo C Y, Zherebtsov A D, Gudkova S A, Chen C T, Tjeng L H, Niewa R 2017 Inorg. Chem. 56 3861

    [34]

    Bavarsiha F, Montazeri-Pour M, Rajabi M 2020 J. Inorg. Organomet. Polym. Mater. 30 2386

    [35]

    Zhang Z Y, Liu X, Wang X J, Wu Y P, Li R 2012 J. Alloys Compd. 525 114

    [36]

    Lechevallier L, Breton J M L, Wang J F, Harris I R 2004 J. Phys.: Condens. Matter 16 5359

    [37]

    Wagner T R 1997 J. Solid State Chem. 136 120

    [38]

    Fang Q, Cheng H, Huang K, Wang J, Li R, Jiao Y 2005 J. Magn. Magn Mater. 294 281

    [39]

    Banihashemi V, Ghazi M E, Izadifard M 2021 Physica B 605 412670

    [40]

    Buerger M J 1961 Z. Kristallogr. 115 319

    [41]

    Liu Y, Li R, Qing Y C 2024 Mater. Res. Bull. 172 112661

    [42]

    Banihashemi V, Ghazi M E, Izadifard M 2012 Physica B 605 412670

    [43]

    Hill R 1952 Proc. Phys. Soc. A 65 349

    [44]

    Gao J, Liu Q J, Jang C L 2022 Chin. J. High. Pressure phys. 36 1

    [45]

    Zhu L, Zeng Y R, Wen J, Wen J, Li L, Cheng T M 2018 Electrochim. Acta. 292 190

    [46]

    Pugh S F 1954 Lond.Edinb.Phil.Mag. 367 823

    [47]

    Morita A, Frood D G 1978 J. Phys. D: Appl. Phys. 11 2409

    [48]

    Han Z Q 2010 Ferrite and its Magnetic Physics (Beijing: Aviation Industry Press) p20 (in Chinese) [韩志全 2010 铁氧体及其磁性物理(北京:航空工业出版社)第20页]

    [49]

    Jang Y W 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [蒋有为 2020 博士学位论文(成都:电子科技大学)]

    [50]

    Steinbeck L, Richter M, Eschrig H 2001 J. Magn. Magn. Mater. 226 1011

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算.  , doi: 10.7498/aps.73.20231436
    [2] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究.  , doi: 10.7498/aps.72.20222037
    [3] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , doi: 10.7498/aps.70.20201287
    [4] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究.  , doi: 10.7498/aps.70.20210227
    [5] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , doi: 10.7498/aps.70.20202043
    [6] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , doi: 10.7498/aps.68.20190503
    [7] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响.  , doi: 10.7498/aps.67.20172459
    [8] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响.  , doi: 10.7498/aps.66.187301
    [9] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究.  , doi: 10.7498/aps.65.096103
    [10] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究.  , doi: 10.7498/aps.64.087101
    [11] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究.  , doi: 10.7498/aps.64.037501
    [12] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究.  , doi: 10.7498/aps.62.187102
    [13] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , doi: 10.7498/aps.62.167502
    [14] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究.  , doi: 10.7498/aps.60.048101
    [15] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究.  , doi: 10.7498/aps.60.097503
    [16] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究.  , doi: 10.7498/aps.60.117105
    [17] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究.  , doi: 10.7498/aps.59.5652
    [18] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响.  , doi: 10.7498/aps.56.6008
    [19] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算.  , doi: 10.7498/aps.55.873
    [20] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究.  , doi: 10.7498/aps.55.4816
计量
  • 文章访问数:  201
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-23

/

返回文章
返回
Baidu
map