-
To further investigate and refine the mechanism of pre-strain/pre-stress interaction with hydrogen adsorption on steel (Fe-C alloy) surfaces at the microstructural level, first-principles calculations were employed to study the effects of uniaxial pre-strain on hydrogen adsorption and diffusion at C-doped Fe(110) surfaces. The influence of pre-strain on hydrogen adsorption and permeation was explored through three aspects: atomic spatial configuration, binding energy (Eb), and electronic structure, while diffusion energy barriers for hydrogen permeation were calculated with and without C atom doping. Results demonstrate that doped C atoms induce octahedral lattice distortion in Fe crystals across different directions, creating "distortion" on the Fe(110) surface. Variations in distortion degree (DΔ) at different sites and their distances from C atom lead to inconsistent trends in adsorption configurations (H adsorption height d and unit surface area SΔ) and binding energy (Eb) under pre-strain. For adsorption configurations, d is coupled by ε and C atom effects: at the TFpure site (non-C-doped site ), d decreases as SΔ increases; under compression(ε decreases from 0% to -5%) at TF (C-doped site with C atom directly beneath the site), TFs (C-doped site located closer to the maximally distorted atom Fe135) and TFL sites (C-doped site located farther from the maximally distorted atom Fe135), d positively correlates with DΔ, while under tension (ε increases from 0% to 5%), d negatively correlates with SΔ. For Eb, as ε increases from -5% to 5%, Eb at TFpure peaks then declines, whereas Eb at TF decreases initially before rising, and Eb at TFS/TFL monotonically increases. Analysis reveals that Eb at TFS/TFL positively correlates with the standard deviation (Sα) of the three internal angles in the triangular unit. The diffusion energy barrier (E∆) trends inversely with Eb. When H adsorbs at C-doped sites, adsorption configuration and binding energy calculations suggest H tends to diffuse inward more readily. However, electronic structure analysis reveals repulsion between C and H atoms, accompanied by increased diffusion barriers compared to undoped cases, causing H atoms to accumulate around C atoms rather than penetrating the bulk phase, thereby inducing hydrogen embrittlement. Adsorption configuration, binding energy, and diffusion barrier calculations indicate that at doped sites (TFS site), increasing tensile strain facilitates H diffusion into the steel microstructure, whereas compressive strain hinders it. This explains the engineering phenomenon where "higher carbon content exacerbates hydrogen embrittlement tendency under equivalent stress" at the atomic scale. The study elucidates the mechanism of H adsorption on pre-strained Fe-C alloy surfaces from an electronic structure perspective, providing theoretical insights for hydrogen embrittlement research.
-
Keywords:
- First principles /
- α-Fe(C) /
- Pre-strain /
- H adsorption
-
[1] Teng Y, Wang Z D, Li Y, Ma Q, Hui Q, Li S B 2019Csee J. Power Energy 5 266
[2] Zhang B, Wan H, Xu K Z, Li X J, Wei S X 2017Int. Pet. Econ. 25 65(in Chinese)[张博,万宏,徐可忠,李雪静,魏寿祥2017国际石油经济25 65]
[3] Dodds P E, Mcdowall W 2013Energy Policy 60 305
[4] Buzzard R W, Cleaves H E 1951Hydrogen Embrittlement of Steel-Review of Literature(United States:National Bureau of Standards) p36
[5] Liu S, Wang M G 2015Trans. Nonferrous Met. Soc. China 25 3100(in Chinese)[刘松,王寅岗2015中国有色金属学25 3100]
[6] Hu S W, Liang H, Xu B 2019Acta Aeronaut. Astronaut. Sin. 40278(in Chinese)[胡世威,梁浩,徐兵2019航空学报 40278]
[7] Cheng A K,Chen N Z 2017Int. J. Fatigue 96152
[8] Cheng A K,Chen N Z 2017Ocean Eng. 142 10
[9] Meda U S, Bhat N, Pandey A, Subramanya K N, Lourdu Antony Raj M A 2023Int. J. Hydrogen Energ. 4817894
[10] Nanninga N, Grochowsi J, Heldt L, Rundman K 2009Corros. Sci. 52 1237
[11] Nanninga N E, Levy YS, Drexler ES, Condon RT, Stevenson A E, Slifka A J 2012Corros. Sci. 59 1
[12] Zhou C S, Ye B G, Song Y Y, Cui T C, Xu P, Zhang L 2019Int. J. Hydrogen Energ. 44 22547
[13] Toofan J, Watson P R 1998Surf. Sci. 401 162
[14] Russell B C, Castell M R. 2008Phys. Rev. B 77 245414
[15] Lord M A, Evans E J, Barnett J C, Allen W M, Barron R A, Wilks P S 2017J. Phys. Condens. Mat. 29 384001
[16] Li S Y, Hu R S, Zhao W M, Li B B, Wang Y 2020Surf. Technol. 49 15(in Chinese)[李守英,胡瑞松,赵卫民,李贝贝王勇2020表面技术49 15]
[17] Hu T H, Li Z H, Zhang Q F 2024Acta Phys. Sin. 73 067101(in Chinese)[胡庭赫,李直昊,张千帆,2024 73 067101]
[18] Zhao W, Wang J D, Liu F B, Chen D R 2009Acta phys. Sin. 58 3352(in Chinese)[赵巍,汪家道,刘峰斌,陈大融2009 58 3352]
[19] Yoshida K 1980Jpn. J. Appl. Phys. 19 1873
[20] Tang X Y 2016Master Dissertation (Qingdao:China University of Petroleum (East China))(in Chinese)[唐秀艳2016硕士学位论文青岛:中国石油大学(华东)]
[21] Savoie J, Ray R K, Butron-Guillen M P, Jonas J J 1994Acta Metall. Mater. 42 2511
[22] Cremaschi P, Yang H, Whitten J L 1995Surf. Sci. 330 255
[23] Bozso F, Ertl G, Grunze M, Weiss M 1977Appl. of Surf. Sci. 1 103
[24] Baró A M, Erley W 1981Surf. Sci. 112 L759
[25] Xie W W, Peng L, Peng D L, Gu F L, Liu J 2014Appl. Surf. Sci 29647
[26] Eder M, Terakura K, Hafner J 2001 Phys. Rev. B 2001, 64115426-115
[27] Raeker J T, DePristo E A 1990 Surf. Sci. 1990235 84
[28] Chohan K U, Jimenez M E, Koehler P K S 2016Appl. of Surf. Sci. 387 385
[29] Xu L, Kirvassilis D, Bai Y, Mavrikakis M 2018Surf. Sci. 667 54
[30] Richard T, Zihan X, Balachandran R, Donald W, Wenhao S, Kristin A P, Ping O S 2016Sci. Data 3 160080
[31] Sheikhzadeh A, Liu J, Zeng Y M, Zhang H 2024Int. J. Hydrogen Energ. 81 727
[32] Li S Y, Zhao W M, Qiao J H, Wang Y 2019Acta Phys. Sin. 68 217103(in Chinese)[李守英,赵卫民,乔建华,王勇2019 68 217103]
[33] Li S Y, Zhao W M, Wang Y, 2020Chinese J. Struc. Chem. 39 443
[34] Kresse G, Joubert D 1999Phys. Rev. B 591758
[35] Kresse G, Hafner J. 1993Phys. Rev. B 47 558
[36] Blochl P E 1994Phys. Rev. B 50 17953
[37] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[38] Liu X W, Huo C F, Li Y W, Wang J G, Jiao H J 2012Surf. Sci. 606 733
[39] Jiang D E, Carter A E 2005Phys. Rev. B 71 045402.1
[40] Dong N, Zhang C, Liu H, Li J, Wu X L 2014Comp. Mater. Sci. 90137
[41] Stibor A, Kresse G, Eichler A, Hafner J 2002Surf. Sci. 507 99
[42] Spencer J S M, Hung A, Snook K I, Yarovsky I 2002. Surf. Sci. 515 L464
[43] Arya A, Carter A E 2003J. Chem. Phys. 118 8982
[44] Shih H D, Jona F, Bardi U, Marcus P M 1980J. Phys. C:Solid State Phys. 13 3801
[45] Xu C, O'Connor D J 1991Nucl. Instrum. Meth. B 53 315
[46] Chohan K U, Jimenez-Melero E, Koehler P K S 2016Appl. Surf. Sci. 387 385
[47] Liu X W, Huo C F, Li Y W, Wang J G, Jiao H J 2012Surf. Sci. 606 733
[48] Shen X J, Chen J,Sun Y M, Liang T S 2016Surf. Sci. 654 48
[49] Jiang D E, Carter A E 2003 Surf. Sci. 547 85
[50] Yang Y, He Q F 2021Acta Metall. Sin. 57 385(in Chinese)[杨勇,赫全锋2021金属学报, 57 385]
[51] Li X J, Lin S Y, Zhou W Z, Ma Y, Jiang N B, Liu Z 2024Int. J. Hydrogen Energ. 51 894
[52] He Y, Li Y J, Chen C F, Yu H B 2017Int. J. Hydrogen Energ. 4227438
[53] Henkelman G, Uberuaga P B, Jónsson H 2000J. Chem. Phys. 113 9901
[54] Jiang D E, Carter A E 2004Phys. Rev. B 70 064102.
[55] Zhu L X, Luo J H, Zheng S L, Yang S J, Hu J, Chen Z 2023 Int. J. Hydrogen Energ. 48 17703
[56] Liu F, Wen Z P 2019Acta Phys. Sin. 68 137101(in Chinese)[刘飞,文志鹏2019 68 137101]
[57] Zhang F C, Li CF, Wen P, Luo Q, Ran Z L 2014Acta Phys. Sin. 63 227101(in Chinese)[张凤春,李春福,文平,罗强,冉曾令2014 63 227101]
[58] Wang C M, Zhang L J, Ma Y J, Zhang S Z, Yang R, Hu Q M 2023Appl. Surf. Sci. 621 156871
[59] Zhang J L, Wang Z M, Wang D H, Hu C H, Wang F, Gan W J, Lin Z K 2023Acta Phys. Sin. 72 168801(in Chinese)[张江林,王仲民,王殿辉,胡朝浩,王凤,甘伟江,林振琨2023 72 168801]
Metrics
- Abstract views: 20
- PDF Downloads: 0
- Cited By: 0