Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles calculation for hydrogen-doped hematite

Shi Yu Bai Yang Mo Li-Bin Xiang Qing-Yun Huang Ya-Li Cao Jiang-Li

Citation:

First-principles calculation for hydrogen-doped hematite

Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Hexagonal α-Fe2O3 is one of the most common functional material used as magnetic semiconductor, and plays an important part in various applications, such as electronic devices etc. Based on the density functional theory, the lattice parameters, density of states and Bader charge analysis of α-Fe2O3 have been calculated using the first-principles calculation with GGA+U method. As Fe is a transition metal element, the value of U can be more accurate by considering the influence of the strong on-site Coulomb interaction between 3d electrons. First, the crystal equilibrium volume, the magnetic moment of Fe atom, and the band gap value of α-Fe2O3 are synthetically researched and compared with those with different U. Results indicate that the calculation model of α-Fe2O3 are in good agreement with the experimental model when the value of U is 6 eV. These parameters can also be adapted to the following doping calculaton. The α-Fe2O3 unit cell has both tetrahedral and octahedral interstitial sites. The calculation of doping formation energy shows that the α-Fe2O3 system is most stable when the doped hydrogen atom is in the tetrahedral interstitial site. The density of states show that the valence band and conduction band compositions are similar for the bulk and hydrogen-doped α-Fe2O3. That is, the valence bands are dominated mainly by both O 2p and Fe 3d orbitals with the O 2p orbitals playing a leading role, while the conduction band is dominated by Fe 3d orbitals. The band gap of α-Fe2O3 decreases from 2.2 to 1.63 eV after hydrogen doping. Also, a strong hybrid peak occurs near the Fermi level after hydrogen doping, which is chiefly composed of Fe 3d orbital, and the O 2p orbital also has a small contribution. The H 1s orbital is mainly in the lower level below the top valence band. Results of the Bader charge analysis and the density of states calculation for partial correlated atoms suggest that the new hybrid peak is chiefly caused by Fe atom which is closest to the hydrogen atom in the crystal cell. In this process, H atom loses electrons, and the nearest neighbors of H atom, i.e. O and Fe atoms, almost obtain all the electrons H atom loses, so H and O atoms are bonded together strongly, causing the hybrid peak, to expand the width of the top valence band and shift down the bottom of the conduction band, so that the band gap decreases and the electrical conductivity increases. Hydrogen doping is suggested to be an effective method to modify the band.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. FRF-SD-12-027A, FRF-TP-13-047), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0778), and the Special Innovation Methods of the Ministry of Science and Technology of China (Grant No. 2012IM030500).
    [1]

    Droubay T, Rosso K M, Heald S M, McCready D E, Wang C M, Chambers S A 2007 Phys. Rev. B 75 104412

    [2]

    Amrit B, Velev J, Butler W H, Sarker S K, Bengone O 2004 Phys. Rev. B 69 174429

    [3]

    Pozun Z D, Henkelman G 2011 J. Chem. Phys. 134 224706

    [4]

    Shinde S S, Bhosale C H, Rajpure K Y 2011 J. Alloys Compd. 509 3943

    [5]

    Meng X Y, Qin G W, Li S, Wen X H, Ren Y P, Pei W L, Zuo L 2011 Appl. Phys. Lett. 98 112104

    [6]

    Zhang L, Xu M, Yu F, Yuan H, Ma T 2013 Acta Phys. Sin. 62 027501 (in Chinese) [张丽, 徐明, 余飞, 袁欢, 马涛 2013 62 027501]

    [7]

    Zhang H, Liu Y J, Pan L H, Zhang Y 2009 Acta Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华, 张瑜 2009 58 7141]

    [8]

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501 (in Chinese) [潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 60 108501]

    [9]

    Wang B B, Zhou J, Zhang H P, Chen J P 2014 Chin. Phys. B 23 087303

    [10]

    Xu Y, Jin Z M, Zhang Z B, Zhang Z Y, Lin X, Ma G H, Cheng Z X 2014 Chin. Phys. B 23 044206

    [11]

    Wang C, Wang F F, Fu X Q, Zhang E D, Xu Z 2011 Chin. Phys. B 20 050701

    [12]

    Praveen C S, Timon V, Valant M 2012 Comput. Mater. Sci. 55 192

    [13]

    Zielinski J, Zglinicka I, Znak L, Kaszkur Z 2010 Appl. Catal. A:Gen 381 191

    [14]

    Gaudon M, Pailhe N, Majimel J, Wattiaux A, Abel J, Demourgues A 2010 J. Solid States Chem. 183 2101

    [15]

    Hahn N T, Buddie Mullins C 2010 Chem. Mater. 22 6474

    [16]

    Lukowski M A, Song J 2011 J. Phys. Chem. C 115 12388

    [17]

    Liu J, Liang C H, Zhang H M, Tian Z F, Zhang S Y 2012 J. Phys. Chem. C 116 4896

    [18]

    Shwarsctein A K, Hu Y S, Forman A J, Stucky G D, McFarland E W 2008 J. Phys. Chem. C 112 15900

    [19]

    Shwarsctein A K, Huda M N, Walsh A, Yan Y F, Stucky G D, Hu Y S, Al-Jassim M M, McFarland E W 2010 Chem. Mater. 22 510

    [20]

    Zhang M L, Luo W J, Li Z S, Yu T, Zou Z G 2010 Appl. Phys. Lett. 97 042105

    [21]

    Tang H W, Yin W J, Matin M A, Wang H L, Deutsch T, Al-Jassim M M, Turner J A, Yan Y F 2012 J. Appl. Phys. 111 073502

    [22]

    Van de Walle C G, Neugebauer J 2003 Nature 423 626

    [23]

    Van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    [24]

    Wardle M G, Goss J P, Briddon P R 2006 Phys. Rev. Lett. 96 1

    [25]

    Cox S F J 2003 J. Phys. Con. Matt. 15 1727

    [26]

    Peacock P W, Robertson J 2003 Appl. Phys. Lett. 83 2025

    [27]

    Kilic C, Zunger A. 2002 Appl. Phys. Lett. 81 73

    [28]

    Chang H, Wu J, Gu B L, Liu F, Duan W 2005 Phys. Rev. Lett. 95 196803

    [29]

    Chen W P, Shen Z J, Yuan G L 2007 Mater. Lett. 61 4354

    [30]

    Chen W P, Wang Y, Chan H L W 2008 Appl. Phys. Lett. 92 112907

    [31]

    Rollmann G, Rohrbach A, Entel P, Hafner J 2004 Phys. Rev. B 69 165107

    [32]

    Finger L W, Hazen R M 1980 J. Appl. Phys. 51 5362

    [33]

    Mochizuki S 1977 Phys Status Solidi A 41 591

    [34]

    Todorova M, Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [35]

    Chen W P, Wang J, Wang D Y, Wang Y, Qi J Q, Chan H L W 2004 Physica B 353 41

    [36]

    Cao J L, Wang X H, Zhang L, Liu M, Li L T 2003 Ceram. Int. 29 327

    [37]

    Cao J L, Wang X H, Zhang L, Li L T 2002 Mater. Lett. 57 386

    [38]

    Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L, Zhang S B 2010 Phys. Rev. B 82 193103

  • [1]

    Droubay T, Rosso K M, Heald S M, McCready D E, Wang C M, Chambers S A 2007 Phys. Rev. B 75 104412

    [2]

    Amrit B, Velev J, Butler W H, Sarker S K, Bengone O 2004 Phys. Rev. B 69 174429

    [3]

    Pozun Z D, Henkelman G 2011 J. Chem. Phys. 134 224706

    [4]

    Shinde S S, Bhosale C H, Rajpure K Y 2011 J. Alloys Compd. 509 3943

    [5]

    Meng X Y, Qin G W, Li S, Wen X H, Ren Y P, Pei W L, Zuo L 2011 Appl. Phys. Lett. 98 112104

    [6]

    Zhang L, Xu M, Yu F, Yuan H, Ma T 2013 Acta Phys. Sin. 62 027501 (in Chinese) [张丽, 徐明, 余飞, 袁欢, 马涛 2013 62 027501]

    [7]

    Zhang H, Liu Y J, Pan L H, Zhang Y 2009 Acta Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华, 张瑜 2009 58 7141]

    [8]

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501 (in Chinese) [潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 60 108501]

    [9]

    Wang B B, Zhou J, Zhang H P, Chen J P 2014 Chin. Phys. B 23 087303

    [10]

    Xu Y, Jin Z M, Zhang Z B, Zhang Z Y, Lin X, Ma G H, Cheng Z X 2014 Chin. Phys. B 23 044206

    [11]

    Wang C, Wang F F, Fu X Q, Zhang E D, Xu Z 2011 Chin. Phys. B 20 050701

    [12]

    Praveen C S, Timon V, Valant M 2012 Comput. Mater. Sci. 55 192

    [13]

    Zielinski J, Zglinicka I, Znak L, Kaszkur Z 2010 Appl. Catal. A:Gen 381 191

    [14]

    Gaudon M, Pailhe N, Majimel J, Wattiaux A, Abel J, Demourgues A 2010 J. Solid States Chem. 183 2101

    [15]

    Hahn N T, Buddie Mullins C 2010 Chem. Mater. 22 6474

    [16]

    Lukowski M A, Song J 2011 J. Phys. Chem. C 115 12388

    [17]

    Liu J, Liang C H, Zhang H M, Tian Z F, Zhang S Y 2012 J. Phys. Chem. C 116 4896

    [18]

    Shwarsctein A K, Hu Y S, Forman A J, Stucky G D, McFarland E W 2008 J. Phys. Chem. C 112 15900

    [19]

    Shwarsctein A K, Huda M N, Walsh A, Yan Y F, Stucky G D, Hu Y S, Al-Jassim M M, McFarland E W 2010 Chem. Mater. 22 510

    [20]

    Zhang M L, Luo W J, Li Z S, Yu T, Zou Z G 2010 Appl. Phys. Lett. 97 042105

    [21]

    Tang H W, Yin W J, Matin M A, Wang H L, Deutsch T, Al-Jassim M M, Turner J A, Yan Y F 2012 J. Appl. Phys. 111 073502

    [22]

    Van de Walle C G, Neugebauer J 2003 Nature 423 626

    [23]

    Van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    [24]

    Wardle M G, Goss J P, Briddon P R 2006 Phys. Rev. Lett. 96 1

    [25]

    Cox S F J 2003 J. Phys. Con. Matt. 15 1727

    [26]

    Peacock P W, Robertson J 2003 Appl. Phys. Lett. 83 2025

    [27]

    Kilic C, Zunger A. 2002 Appl. Phys. Lett. 81 73

    [28]

    Chang H, Wu J, Gu B L, Liu F, Duan W 2005 Phys. Rev. Lett. 95 196803

    [29]

    Chen W P, Shen Z J, Yuan G L 2007 Mater. Lett. 61 4354

    [30]

    Chen W P, Wang Y, Chan H L W 2008 Appl. Phys. Lett. 92 112907

    [31]

    Rollmann G, Rohrbach A, Entel P, Hafner J 2004 Phys. Rev. B 69 165107

    [32]

    Finger L W, Hazen R M 1980 J. Appl. Phys. 51 5362

    [33]

    Mochizuki S 1977 Phys Status Solidi A 41 591

    [34]

    Todorova M, Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [35]

    Chen W P, Wang J, Wang D Y, Wang Y, Qi J Q, Chan H L W 2004 Physica B 353 41

    [36]

    Cao J L, Wang X H, Zhang L, Liu M, Li L T 2003 Ceram. Int. 29 327

    [37]

    Cao J L, Wang X H, Zhang L, Li L T 2002 Mater. Lett. 57 386

    [38]

    Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L, Zhang S B 2010 Phys. Rev. B 82 193103

  • [1] Wang Xiu-Yu, Wang Tao, Cui Yu-Ang, Wu Xi-Guang-Run, Wang Yang. First-principles study of effect of impurity compensation on optical properties of Si. Acta Physica Sinica, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] Fu Zheng-Hong, Li Ting, Shan Mei-Le, Guo Kang, Gou Guo-Qing. Effect of H on elastic properties of Mg2Si by the first principles calculation. Acta Physica Sinica, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [3] Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo. First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states. Acta Physica Sinica, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [4] Lin Qiao-Lu, Li Gong-Ping, Xu Nan-Nan, Liu Huan, Wang Cang-Long. A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2. Acta Physica Sinica, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [5] Chen Li-Jing, Li Wei-Xue, Dai Jian-Feng, Wang Qing. First-prinicples study of Mn-N co-doped p-type ZnO. Acta Physica Sinica, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [6] Deng Sheng-Hua, Jiang Zhi-Lin. First-principles study on p-type ZnO codoped with F and Na. Acta Physica Sinica, 2014, 63(7): 077101. doi: 10.7498/aps.63.077101
    [7] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [8] Duan Yong-Hua, Sun Yong. Electronic structure and optical properties of (α, β, γ)-Nb5Si3. Acta Physica Sinica, 2012, 61(21): 217101. doi: 10.7498/aps.61.217101
    [9] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. Study of material properties of Fe, S Co-doped SnO2 by first principles. Acta Physica Sinica, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [10] Zhao Rong-Da, Zhu Jing-Chuan, Liu Yong, Lai Zhong-Hong. First-principles study of FeAl(B2) microalloyed with La, Ac, Sc and Y. Acta Physica Sinica, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [11] Jiang Lei, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Lu Yao, Zhang Guo-Lian. Electronic structure and optical properties of Cr doped SnO2 superlattice. Acta Physica Sinica, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [12] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [13] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Jiang Lei, Zhang Guo-Lian, Song Peng. Material opto-electronic properties of In, N co-doped SnO2 studied by first principles. Acta Physica Sinica, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [14] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. First-principles calculation on electronic structure and optical properties of iron-doped SnO2. Acta Physica Sinica, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [15] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [16] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] Zhang Jian-Min, Xu Ke-Wei, Shu Yu, Wang Guo-Hong. First-principles study of the multilayer relaxation of Cu stepped surfaces. Acta Physica Sinica, 2010, 59(7): 4911-4918. doi: 10.7498/aps.59.4911
    [18] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. First-principles study of optical and electronic properties of N-doped SnO2. Acta Physica Sinica, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [19] Hai Kuo, Tang Dong-Sheng, Yuan Hua-Jun, Peng Yue-Hua, Luo Zhi-Hua, Liu Hong-Xia, Chen Ya-Qi, Yu Fang, Yang Yi. Synthesis of large-area, vertically aligned α-Fe2O3 nanowire and nanobelt arrays. Acta Physica Sinica, 2009, 58(2): 1120-1125. doi: 10.7498/aps.58.1120
    [20] Zhang Jin-Kui, Deng Sheng-Hua, Jin Hui, Liu Yue-Lin. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Physica Sinica, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
Metrics
  • Abstract views:  8259
  • PDF Downloads:  8482
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2014
  • Accepted Date:  07 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map