Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polaron optical absorption effect in perovskite quantum dot materials

FENG Shuang MA Haonan BAI Jing MA Xinjun SUN Yong

Citation:

Polaron optical absorption effect in perovskite quantum dot materials

FENG Shuang, MA Haonan, BAI Jing, MA Xinjun, SUN Yong
cstr: 32037.14.aps.74.20250105
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Perovskite quantum dots, as an emerging class of nanomaterial, have demonstrated significant potential applications in the field of optoelectronic energy conversion due to their unique optoelectronic properties. In particular, polarons play a crucial role in the optical and optoelectronic performance of perovskite quantum dots. Polaron formation, which involves the coupling of electrons with lattice phonons, can induce charge shielding effect and localization effect, thereby protecting charge carriers from scattering and recombining. This leads to longer carrier lifetimes and diffusion lengths, thereby enhancing the efficiency of optoelectronic energy conversion. In this study, a polaronic light absorption model is established using unitary transformation and the Larsen method, revealing the dependence of polaronic transition optical absorption on the electron-phonon coupling constant and effective mass in perovskite quantum dots. The results indicate that the vibration frequency, excited-state energy of polarons, and the transition spectral line frequency are closely related to the electron-phonon coupling strength and effective mass. Specifically, as the electron-phonon coupling constant increases, the vibration frequency and excited-state energy of polarons decrease, while the transition spectral line frequency increases. This finding not only elucidates the physical mechanism of polaronic optical absorption but also provides new insights and methods for optimizing the performance of perovskite quantum dot materials. Moreover, this research expands the application scope of perovskite quantum dots in fields such as photodetectors, light-emitting diodes (LEDs), and solar cells. For instance, in LEDs, the high photoluminescence quantum yield and tunable bandgap of perovskite quantum dots make them ideal luminescent materials. In solar cells, their excellent optoelectronic conversion efficiency and carrier transport properties can significantly enhance device performance. By further optimizing polaron-related characteristics, it is expected that the performance of perovskite quantum dots in these applications can be further improved.
      Corresponding author: SUN Yong, sy19851009@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12164032), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2022MS01014), the Doctoral Research Start-up Fund of Inner Mongolia University for Nationalities, China (Grant No. BS625), the Doctoral Research Start-up Fund Inner Mongolia University for Nationalities, China (Grant No. BS531), and the Basic Scientific Research Business Fee Project of Universities Directly Under Inner Mongolia Autonomous Region of China (Grant Nos. GXKY23Z029, GXKY23Z030).
    [1]

    Attfield J P, Lightfoot P, Morris R E 2015 Dalton Trans. 44 10541Google Scholar

    [2]

    Bai Y, Hao M M, Ding S S, Chen P, Wang L Z 2022 Adv. Mater. 34 2105958Google Scholar

    [3]

    Park A, Goudarzi A, Yaghmaie P, Thomas V J, Maine E 2022 Nat. Nanotechnol. 17 802Google Scholar

    [4]

    Dong X, Shen Y, Wang F M, He Z M, Zhao Y Z, Miao Z C, Wu Z B 2025 Small 21 2412809Google Scholar

    [5]

    Shi Y, Berry J J, Zhang F 2024 ACS Energy Lett. 9 1305Google Scholar

    [6]

    Yang W Q, Su R, Luo D Y, Hu Q, Zhang F, Xu Z J, Wang Z P, Tang J L, Lv Z, Yang X Y, Tu Y G, Zhang W, Zhong H Z, Gong Q H, Russell T P, Zhu R 2020 Nano Energy 67 104189Google Scholar

    [7]

    Liu L, Najar A, Wang K, Du M, Liu S (Frank) 2022 Adv. Sci. 9 2104577Google Scholar

    [8]

    Akin S, Altintas Y, Mutlugun E, Sonmezoglu S 2019 Nano Energy 60 557Google Scholar

    [9]

    Chen J X, Jia D L, Johansson E M J, Hagfeldt A, Zhang X L 2018 Energy Environ. Sci. 11 772Google Scholar

    [10]

    Wang Y, Duan C H, Zhang X L, Sun J G, Ling X F, Shi J W, Hu L, Zhou Z Z, Wu X X, Han W, Liu X F, Cazorla C, Chu D W, Huang S J, Wu T, Yuan J Y, Ma W L 2022 Adv. Funct. Mater. 32 2108615Google Scholar

    [11]

    Wang J, Gao S, Duan X M, Yin W J 2024 Acta Phys. Sin. 73 063101 (in Chiness) [王静, 高姗, 段香梅, 尹万健 2024 73 063101]Google Scholar

    Wang J, Gao S, Duan X M, Yin W J 2024 Acta Phys. Sin. 73 063101 (in Chiness)Google Scholar

    [12]

    Hao M M, Ding S S, Gaznaghi S, Cheng H Y, Wang L Z 2024 ACS Energy Lett. 9 308Google Scholar

    [13]

    Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S 2018 Small 14 1702433Google Scholar

    [14]

    Yang J N, Chen T, Ge J, Wang J J, Yin Y C, Lan Y F, Ru X C, Ma Z Y, Zhang Q, Yao H B 2021 J. Am. Chem. Soc. 143 19928Google Scholar

    [15]

    Liu Y, Dong Y, Zhu T, Ma D, Proppe A, Chen B, Zheng C, Hou Y, Lee S, Sun B, Jung E H, Yuan F, Wang Y K, Sagar L K, Hoogland S, García De Arquer F P, Choi M J, Singh K, Kelley S O, Voznyy O, Lu Z H, Sargent E H 2021 J. Am. Chem. Soc. 143 15606Google Scholar

    [16]

    He H Y, Mei S L, Wen Z Q, Yang D, Yang B B, Zhang W L, Xie F X, Xing G C, Guo R Q 2022 Small 18 2103527Google Scholar

    [17]

    Le Q V, Hong K, Jang H W, Kim S Y 2018 Adv. Electron. Mater. 4 1800335Google Scholar

    [18]

    Cardenas-Morcoso D, Gualdrón-Reyes A F, Ferreira Vitoreti A B, García-Tecedor M, Yoon S J, Solis De La Fuente M, Mora-Seró I, Gimenez S 2019 J. Phys. Chem. Lett. 10 630Google Scholar

    [19]

    Xiao Z J, Li J L, Mai X Y, Yang J L, Zhu M S 2024 Catal. Sci. Technol. 14 4432Google Scholar

    [20]

    Geng X S, Wang F W, Tian H, Feng Q X, Zhang H N, Liang R R, Shen Y, Ju Z Y, Gou G Y, Deng N Q, Li Y T, Ren J, Xie D, Yang Y, Ren T L 2020 ACS Nano 14 2860Google Scholar

    [21]

    Zhang Y H, Wu G H, Liu F, Ding C, Zou Z G, Shen Q 2020 Chem. Soc. Rev. 49 49Google Scholar

    [22]

    Wang S, Zhao Q, Hazarika A, Li S M, Wu Y, Zhai Y X, Chen X H, Luther J M, Li G R 2023 Nat. Commun. 14 2216Google Scholar

    [23]

    Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G, Gong X, Kanjanaboos P, Nogueira A F, Sargent E H 2015 ACS Appl. Mater. Interfaces 7 25007Google Scholar

    [24]

    Chen J, Du W N, Shi J W, Li M L, Wang Y, Zhang Q, Liu X F 2020 InfoMat 2 170Google Scholar

    [25]

    Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [26]

    Bujalance C, Caliò L, Dirin D N, Tiede D O, Galisteo-López J F, Feist J, García-Vidal F J, Kovalenko M V, Míguez H 2024 ACS Nano 18 4922Google Scholar

    [27]

    尹博钊, 黄雄健, 董国平 2023 发光学报 44 437

    Yin B Z, Huang X J, Dong G P 2023 J. Luminescence 44 437

    [28]

    高雯欢, 丁济可, 马全兴, 苏郁清, 宋宏伟, 陈聪 2024 化学进展 36 187Google Scholar

    Gao W H, Ding J K, Ma Q X, Su Y Q, Song H W, Chen C 2024 Prog. Chem. 36 187Google Scholar

    [29]

    Liang J H, Chen D, Yao X, Zhang K X, Qu F L, Qin L S, Huang Y X, Li J H 2020 Small 16 1903398Google Scholar

    [30]

    乐亚坤, 黄雄健, 董国平 2024 硅酸盐学报 52 2659Google Scholar

    Le Y K, Huang X J, Dong G P 2024 J. Chin. Ceramic So. 52 2659Google Scholar

    [31]

    Wang Y, Zha Y, Yang Y, Liu C, Di Y, Cao G, Wei S, Chen Z, Gan Z 2023 Sci. China Technol. Sci. 66 2735Google Scholar

    [32]

    曾平君, 金旭东, 彭钰博, 赵敏, 高志鹏, 李晓娜, 冀健龙, 陈维毅 2023 生物医学工程学杂志 40 11045Google Scholar

    Zeng P J, Jin X D, Peng Y B, Zhao M, Gao Z P, Li X N, Ji J L, Chen W Y 2023 J. Biomed. Eng. 40 11045Google Scholar

    [33]

    武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英 2023 化学学报 81 905Google Scholar

    Wu H L, Guo R, Chi H W, Tang Y H, Song S R, Ge E X, Lin W Y 2023 Acta. Chim. Sin. 81 905Google Scholar

    [34]

    郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮 2018 67 118502Google Scholar

    Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T, Wei W 2018 Acta. Phys. Sin. 67 118502Google Scholar

  • 图 1  钙钛矿量子点极化子光吸收示意图

    Figure 1.  Schematic diagram of perovskite quantum dot polaron optical absorption.

    图 2  钙钛矿材料光吸收系数

    Figure 2.  Absorption optical coefficient of perovskite materials

    图 3  极化子由基态能级跃迁到第一个朗道能级的吸收系数

    Figure 3.  Absorption coefficient of the polaron transition from the ground state level to the first Landau level.

    图 4  极化子吸收一个光子由基态能级跃迁到一个声子能级的吸收系数

    Figure 4.  Absorption coefficient of a photon transitioning from the ground state energy level to a phonon energy level.

    表 1  钙钛矿各晶体的参数

    Table 1.  Parameters of each perovskite crystal.

    参数MAPbCl3MAPbBr3MAPbI3
    耦合常数α2.171.691.72
    有效质量m*0.2m00.117m00.104m0
    DownLoad: CSV
    Baidu
  • [1]

    Attfield J P, Lightfoot P, Morris R E 2015 Dalton Trans. 44 10541Google Scholar

    [2]

    Bai Y, Hao M M, Ding S S, Chen P, Wang L Z 2022 Adv. Mater. 34 2105958Google Scholar

    [3]

    Park A, Goudarzi A, Yaghmaie P, Thomas V J, Maine E 2022 Nat. Nanotechnol. 17 802Google Scholar

    [4]

    Dong X, Shen Y, Wang F M, He Z M, Zhao Y Z, Miao Z C, Wu Z B 2025 Small 21 2412809Google Scholar

    [5]

    Shi Y, Berry J J, Zhang F 2024 ACS Energy Lett. 9 1305Google Scholar

    [6]

    Yang W Q, Su R, Luo D Y, Hu Q, Zhang F, Xu Z J, Wang Z P, Tang J L, Lv Z, Yang X Y, Tu Y G, Zhang W, Zhong H Z, Gong Q H, Russell T P, Zhu R 2020 Nano Energy 67 104189Google Scholar

    [7]

    Liu L, Najar A, Wang K, Du M, Liu S (Frank) 2022 Adv. Sci. 9 2104577Google Scholar

    [8]

    Akin S, Altintas Y, Mutlugun E, Sonmezoglu S 2019 Nano Energy 60 557Google Scholar

    [9]

    Chen J X, Jia D L, Johansson E M J, Hagfeldt A, Zhang X L 2018 Energy Environ. Sci. 11 772Google Scholar

    [10]

    Wang Y, Duan C H, Zhang X L, Sun J G, Ling X F, Shi J W, Hu L, Zhou Z Z, Wu X X, Han W, Liu X F, Cazorla C, Chu D W, Huang S J, Wu T, Yuan J Y, Ma W L 2022 Adv. Funct. Mater. 32 2108615Google Scholar

    [11]

    Wang J, Gao S, Duan X M, Yin W J 2024 Acta Phys. Sin. 73 063101 (in Chiness) [王静, 高姗, 段香梅, 尹万健 2024 73 063101]Google Scholar

    Wang J, Gao S, Duan X M, Yin W J 2024 Acta Phys. Sin. 73 063101 (in Chiness)Google Scholar

    [12]

    Hao M M, Ding S S, Gaznaghi S, Cheng H Y, Wang L Z 2024 ACS Energy Lett. 9 308Google Scholar

    [13]

    Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S 2018 Small 14 1702433Google Scholar

    [14]

    Yang J N, Chen T, Ge J, Wang J J, Yin Y C, Lan Y F, Ru X C, Ma Z Y, Zhang Q, Yao H B 2021 J. Am. Chem. Soc. 143 19928Google Scholar

    [15]

    Liu Y, Dong Y, Zhu T, Ma D, Proppe A, Chen B, Zheng C, Hou Y, Lee S, Sun B, Jung E H, Yuan F, Wang Y K, Sagar L K, Hoogland S, García De Arquer F P, Choi M J, Singh K, Kelley S O, Voznyy O, Lu Z H, Sargent E H 2021 J. Am. Chem. Soc. 143 15606Google Scholar

    [16]

    He H Y, Mei S L, Wen Z Q, Yang D, Yang B B, Zhang W L, Xie F X, Xing G C, Guo R Q 2022 Small 18 2103527Google Scholar

    [17]

    Le Q V, Hong K, Jang H W, Kim S Y 2018 Adv. Electron. Mater. 4 1800335Google Scholar

    [18]

    Cardenas-Morcoso D, Gualdrón-Reyes A F, Ferreira Vitoreti A B, García-Tecedor M, Yoon S J, Solis De La Fuente M, Mora-Seró I, Gimenez S 2019 J. Phys. Chem. Lett. 10 630Google Scholar

    [19]

    Xiao Z J, Li J L, Mai X Y, Yang J L, Zhu M S 2024 Catal. Sci. Technol. 14 4432Google Scholar

    [20]

    Geng X S, Wang F W, Tian H, Feng Q X, Zhang H N, Liang R R, Shen Y, Ju Z Y, Gou G Y, Deng N Q, Li Y T, Ren J, Xie D, Yang Y, Ren T L 2020 ACS Nano 14 2860Google Scholar

    [21]

    Zhang Y H, Wu G H, Liu F, Ding C, Zou Z G, Shen Q 2020 Chem. Soc. Rev. 49 49Google Scholar

    [22]

    Wang S, Zhao Q, Hazarika A, Li S M, Wu Y, Zhai Y X, Chen X H, Luther J M, Li G R 2023 Nat. Commun. 14 2216Google Scholar

    [23]

    Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G, Gong X, Kanjanaboos P, Nogueira A F, Sargent E H 2015 ACS Appl. Mater. Interfaces 7 25007Google Scholar

    [24]

    Chen J, Du W N, Shi J W, Li M L, Wang Y, Zhang Q, Liu X F 2020 InfoMat 2 170Google Scholar

    [25]

    Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [26]

    Bujalance C, Caliò L, Dirin D N, Tiede D O, Galisteo-López J F, Feist J, García-Vidal F J, Kovalenko M V, Míguez H 2024 ACS Nano 18 4922Google Scholar

    [27]

    尹博钊, 黄雄健, 董国平 2023 发光学报 44 437

    Yin B Z, Huang X J, Dong G P 2023 J. Luminescence 44 437

    [28]

    高雯欢, 丁济可, 马全兴, 苏郁清, 宋宏伟, 陈聪 2024 化学进展 36 187Google Scholar

    Gao W H, Ding J K, Ma Q X, Su Y Q, Song H W, Chen C 2024 Prog. Chem. 36 187Google Scholar

    [29]

    Liang J H, Chen D, Yao X, Zhang K X, Qu F L, Qin L S, Huang Y X, Li J H 2020 Small 16 1903398Google Scholar

    [30]

    乐亚坤, 黄雄健, 董国平 2024 硅酸盐学报 52 2659Google Scholar

    Le Y K, Huang X J, Dong G P 2024 J. Chin. Ceramic So. 52 2659Google Scholar

    [31]

    Wang Y, Zha Y, Yang Y, Liu C, Di Y, Cao G, Wei S, Chen Z, Gan Z 2023 Sci. China Technol. Sci. 66 2735Google Scholar

    [32]

    曾平君, 金旭东, 彭钰博, 赵敏, 高志鹏, 李晓娜, 冀健龙, 陈维毅 2023 生物医学工程学杂志 40 11045Google Scholar

    Zeng P J, Jin X D, Peng Y B, Zhao M, Gao Z P, Li X N, Ji J L, Chen W Y 2023 J. Biomed. Eng. 40 11045Google Scholar

    [33]

    武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英 2023 化学学报 81 905Google Scholar

    Wu H L, Guo R, Chi H W, Tang Y H, Song S R, Ge E X, Lin W Y 2023 Acta. Chim. Sin. 81 905Google Scholar

    [34]

    郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮 2018 67 118502Google Scholar

    Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T, Wei W 2018 Acta. Phys. Sin. 67 118502Google Scholar

  • [1] Wang Dong-Zhi, Zhang Yi-Jun, Li Shi-Man, Tong Ze-Hao, Tang Song, Shi Feng, Jiao Gang-Cheng, Cheng Hong-Chang, Fu Rong-Guo, Qian Yun-Sheng, Zeng Yu-Gang. AlGaAs photocathode with enhanced response at 532 nm. Acta Physica Sinica, 2024, 73(11): 118503. doi: 10.7498/aps.73.20240253
    [2] Zhao Xin-Wei, Lü Jun-Peng, Ni Zhen-Hua. Lead halide perovskites Fabry-Pérot resonant cavity laser. Acta Physica Sinica, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [3] Yao Wen-Qian, Sun Jian-Zhe, Chen Jian-Yi, Guo Yun-Long, Wu Bin, Liu Yun-Qi. Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures. Acta Physica Sinica, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [4] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [5] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [6] Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng. Research status and development graphene devices using silicon as the subtrate. Acta Physica Sinica, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [7] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [8] Zhao Cui-Lan, Wang Li-Li, Zhao Li-Li. Properties of excited state of polaron in quantum disk in finite depth parabolic potential well. Acta Physica Sinica, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [9] Wu Zhen-Hua, Li Hua, Yan Liang-Xing, Liu Bing-Can, Tian Qiang. Polaron effect in a GaAs film: the fraction-dimensional space approach. Acta Physica Sinica, 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [10] Liu Bing-Can, Li Hua, Yan Liang-Xing, Sun Hui, Tian Qiang. Effective length of quantum confinement and polaron effect in a GaAs film. Acta Physica Sinica, 2013, 62(19): 197302. doi: 10.7498/aps.62.197302
    [11] Yi Ding, Qin Wei, Xie Shi-Jie. Investigation of polarons in perovskite manganites. Acta Physica Sinica, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [12] Wang Qi-Wen, Hong Lan. Polaron spin relaxation in a two-dimensional quantum dot. Acta Physica Sinica, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [13] Zhao Cui-Lan, Cong Yin-Chuan. The phonon effect of polaron and qubit in spherical shell quantum dot. Acta Physica Sinica, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [14] Ren Xue-Zao, He Shu, Cong Hong-Lu, Wang Xu-Wen. Two-site Hubbard-holstein model polaron of quantum entanglement properties. Acta Physica Sinica, 2012, 61(12): 124207. doi: 10.7498/aps.61.124207
    [15] Zhao Cui-Lan, Gao Kuan-Yun. Influence of phonon and magnetic field on property of polaron in quantum ring. Acta Physica Sinica, 2010, 59(7): 4857-4862. doi: 10.7498/aps.59.4857
    [16] Ren Xue-Zao, Huang Shu-Wen, Liao Xu, Wang Ke-Lin. Study of one-dimensional Holstein polaron in infinite lattice. Acta Physica Sinica, 2009, 58(4): 2680-2683. doi: 10.7498/aps.58.2680
    [17] Xiong Da-Yuan, Li Zhi-Feng, Chen Xiao-Shuang, Li Ning, Zhen Hong-Lou, Lu Wei. Metal sphere array for long wavelength quantum well infrared photodetectors optical coupling. Acta Physica Sinica, 2007, 56(11): 6648-6653. doi: 10.7498/aps.56.6648
    [18] Zhao Feng-Qi, Zhou Bing-Qing. Energy levels of a polaron in wurtzite nitride parabolic quantum well under external electric field. Acta Physica Sinica, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [19] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [20] Qin Hua, Fu Ru-Lian, Gao Hong-Yun, Liu Juan, Shi Xin-Gang. Theoretical study of the pump light absorption inside a three-level solid state laser medium. Acta Physica Sinica, 2005, 54(4): 1587-1592. doi: 10.7498/aps.54.1587
Metrics
  • Abstract views:  150
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2025
  • Accepted Date:  26 February 2025
  • Available Online:  23 April 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map