Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Properties of excited state of polaron in quantum disk in finite depth parabolic potential well

Zhao Cui-Lan Wang Li-Li Zhao Li-Li

Citation:

Properties of excited state of polaron in quantum disk in finite depth parabolic potential well

Zhao Cui-Lan, Wang Li-Li, Zhao Li-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Studies of single quantum state measurement and the relevant physics are very important for the fields of quantum information and quantum coupution. In recent years, quantum dots as information carrier have become a hotpoint of research. The study on quantum dot properties has atracted a lot of attetion and made a series of progress.#br#In this paper, we formulate a theoretical method that can be used to investigate polaron properties in low-dimensional structures in finite depth potential well. We assume that an electron in a quantum disk which is in other medium is in parabolic potential field, but the effect of the medium on the electron in quantum disk is equivalent to a potential barrier with height V1 and width d. By expanding the finite height potential barrier as plane waves and Lee-Low-Pines unitary transformation for Hamiltonian, as well as variation for expectation value of Hamiltonian where trial wave functions are obtained by solving the energy eigen-value equation, the ground state energy, the first excited state energy, and excitation energy of polaron are drived.#br#Numerical calculation by using polaron unit, numerical results indicate that the first excited state energy and excitation energy of polaron increase with increasing the width or height of the potential barrier, because the probability of electron penetrating potential barrier will decrease as the width or height of potential barrier increases, so that electronic energy, the first excited state energy and excitation energy of polaron all increase. Numerical results also show that energies mentioned earlier decrease with increasing radius of quantum disk, which illustrates that the quantum disk has obvious quantum size effect.#br#It is also found from numerical results that the first excited state energy of polaron decreases with increasing effective confine length, it falls quickly when effective confine length is less than 0.3 and is a little change when effective confine length is more than 0.3. The longer the effective confine length, the more weakly the electron is bounded and the smaller the potential energy is, so that the first excited state energy of polaron decreases. Oppositely, the excitation energy of polaron increases with increasing effective confine length, because the first excited state energy decreases more slowly than the ground state energy.
      Corresponding author: Zhao Cui-Lan, nmdzcl@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11464034) and the Higher University Science Research Foundation of Inner Mongolia, China (Grant No. NJzy13174).
    [1]

    Wang H Y, Dou X M, Ni H Q, Niu Z C, Sun B Q 2014 Acta Phys. Sin. 63 027801(in Chinese) [王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权 2014 63 027801]

    [2]

    Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C, Gao F Q 2013 Acta Phys. Sin. 62 207303(in Chinese) [王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐 2013 62 207303]

    [3]

    Zhou Q C, Di Z Y 2013 Acta Phys. Sin. 62 134206(in Chinese) [周青春, 狄尊燕 2013 62 134206]

    [4]

    Li S S, Xia J B 2001 J. Appl. Phys. 89 3434

    [5]

    Chen C Y, Lin D L, Jin P W, Zhang S Q, Chen R 1994 Phys. Rev. B 49 13680

    [6]

    Thilagam A, Lohe M A 2005 Physica E 25 625

    [7]

    Li Y L, Xiao J L 2005 Chin. J. Lumin. 26 436 (in Chinese) [李亚利, 肖景林 2005 发光学报 26 436]

    [8]

    Jian R H, Zhao C L 2008 Chin. J. Lumin. 29 215 [简荣华, 赵翠兰 2008 发光学报 29 215]

    [9]

    Filikhin I, Deyneka E, Vlahovic B 2004 Modelling Simul. Mater. Sci. Eng. 12 1121

    [10]

    Filikhin I, Suslov V M, Vlahovic B 2006 Physica E 33 349

    [11]

    Chang K, Xia J B 1998 Phys. Rev. B 57 9780

    [12]

    Chang K, Lou W K 2011 Phys. Rev. Lett. 106 206802

    [13]

    Fang D F, Ding X, Dai R C, Zhao Z, Wang Z P, Zhang Z M 2014 Chin. Phys. B 23 127804

    [14]

    Bagheri Tagani M, Rahimpour Soleimani H 2014 Chin. Phys. B 23 057302

    [15]

    Kruchinin S Y, Rukhlenko I D, Baimuratov A S, Leonov M Y, Turkov V K, Gun’ko Y K, Baranov A V, Fedorov A V 2015 J. Appl. Phys. 117 014306

    [16]

    Liu Y Y, Petersson K D, Stehlik J, Taylor J M, Petta J R 2014 Phys. Rev. Lett. 113 036801

    [17]

    Samavatia A, Othamana Z, Ghoshalb S K, Mustafac M K 2015 Chin. Phys. B 24 028103

    [18]

    Sarengaowa 2009 M. S. Thesis (Tongliao: Inner Mongolia University for Nationalities) (in Chinese) [萨仁高娃 2009 硕士学位论文(通辽: 内蒙古民族大学)]

  • [1]

    Wang H Y, Dou X M, Ni H Q, Niu Z C, Sun B Q 2014 Acta Phys. Sin. 63 027801(in Chinese) [王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权 2014 63 027801]

    [2]

    Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C, Gao F Q 2013 Acta Phys. Sin. 62 207303(in Chinese) [王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐 2013 62 207303]

    [3]

    Zhou Q C, Di Z Y 2013 Acta Phys. Sin. 62 134206(in Chinese) [周青春, 狄尊燕 2013 62 134206]

    [4]

    Li S S, Xia J B 2001 J. Appl. Phys. 89 3434

    [5]

    Chen C Y, Lin D L, Jin P W, Zhang S Q, Chen R 1994 Phys. Rev. B 49 13680

    [6]

    Thilagam A, Lohe M A 2005 Physica E 25 625

    [7]

    Li Y L, Xiao J L 2005 Chin. J. Lumin. 26 436 (in Chinese) [李亚利, 肖景林 2005 发光学报 26 436]

    [8]

    Jian R H, Zhao C L 2008 Chin. J. Lumin. 29 215 [简荣华, 赵翠兰 2008 发光学报 29 215]

    [9]

    Filikhin I, Deyneka E, Vlahovic B 2004 Modelling Simul. Mater. Sci. Eng. 12 1121

    [10]

    Filikhin I, Suslov V M, Vlahovic B 2006 Physica E 33 349

    [11]

    Chang K, Xia J B 1998 Phys. Rev. B 57 9780

    [12]

    Chang K, Lou W K 2011 Phys. Rev. Lett. 106 206802

    [13]

    Fang D F, Ding X, Dai R C, Zhao Z, Wang Z P, Zhang Z M 2014 Chin. Phys. B 23 127804

    [14]

    Bagheri Tagani M, Rahimpour Soleimani H 2014 Chin. Phys. B 23 057302

    [15]

    Kruchinin S Y, Rukhlenko I D, Baimuratov A S, Leonov M Y, Turkov V K, Gun’ko Y K, Baranov A V, Fedorov A V 2015 J. Appl. Phys. 117 014306

    [16]

    Liu Y Y, Petersson K D, Stehlik J, Taylor J M, Petta J R 2014 Phys. Rev. Lett. 113 036801

    [17]

    Samavatia A, Othamana Z, Ghoshalb S K, Mustafac M K 2015 Chin. Phys. B 24 028103

    [18]

    Sarengaowa 2009 M. S. Thesis (Tongliao: Inner Mongolia University for Nationalities) (in Chinese) [萨仁高娃 2009 硕士学位论文(通辽: 内蒙古民族大学)]

  • [1] Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong. Two-proton emission from excited states of proton-rich nuclei. Acta Physica Sinica, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [3] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [4] Liu Jun-Juan, Wei Zeng-Jiang, Chang Hong, Zhang Ya-Lin, Di Bing. Dynamics of polarons in organic conjugated polymers with impurity ions. Acta Physica Sinica, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [5] Bai Xu-Fang, Wuyunqimuge, Xin Wei, Eerdunchaolu. Study of the properties of strong-coupling magnetopolaron in quantum disks induced by the Rashba spin-orbit interaction. Acta Physica Sinica, 2014, 63(17): 177803. doi: 10.7498/aps.63.177803
    [6] Wu Zhen-Hua, Li Hua, Yan Liang-Xing, Liu Bing-Can, Tian Qiang. Polaron effect in a GaAs film: the fraction-dimensional space approach. Acta Physica Sinica, 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [7] Liu Bing-Can, Li Hua, Yan Liang-Xing, Sun Hui, Tian Qiang. Effective length of quantum confinement and polaron effect in a GaAs film. Acta Physica Sinica, 2013, 62(19): 197302. doi: 10.7498/aps.62.197302
    [8] Wang Qi-Wen, Hong Lan. Polaron spin relaxation in a two-dimensional quantum dot. Acta Physica Sinica, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [9] Ren Xue-Zao, He Shu, Cong Hong-Lu, Wang Xu-Wen. Two-site Hubbard-holstein model polaron of quantum entanglement properties. Acta Physica Sinica, 2012, 61(12): 124207. doi: 10.7498/aps.61.124207
    [10] Zhao Cui-Lan, Cong Yin-Chuan. The phonon effect of polaron and qubit in spherical shell quantum dot. Acta Physica Sinica, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [11] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [12] Zhao Cui-Lan, Gao Kuan-Yun. Influence of phonon and magnetic field on property of polaron in quantum ring. Acta Physica Sinica, 2010, 59(7): 4857-4862. doi: 10.7498/aps.59.4857
    [13] Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [14] Ren Xue-Zao, Huang Shu-Wen, Liao Xu, Wang Ke-Lin. Study of one-dimensional Holstein polaron in infinite lattice. Acta Physica Sinica, 2009, 58(4): 2680-2683. doi: 10.7498/aps.58.2680
    [15] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [16] Zhao Feng-Qi, Zhou Bing-Qing. Energy levels of a polaron in wurtzite nitride parabolic quantum well under external electric field. Acta Physica Sinica, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [17] Tang Nai-Yun, Chen Xiao-Shuang, Lu Wei. The effect of size distribution on photoluminescence of excited states from InAs/GaAs quantum dots. Acta Physica Sinica, 2005, 54(12): 5855-5860. doi: 10.7498/aps.54.5855
    [18] Ren Jun-Feng, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Diffusion theory of spin injection into organic polymers*. Acta Physica Sinica, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] Xin Guo-Feng, Chen Guo-Ying, Hua Ji-Zhen, Zhao Run, Kang Zhi-Long, Feng Rong-Zhu, An Zhen-Feng. Wavelength design for the 941nm high output power strained single-quantum-well semiconductor lasers. Acta Physica Sinica, 2004, 53(5): 1293-1298. doi: 10.7498/aps.53.1293
    [20] Liu Cui-Hong, Chen Chuan-Yi, Ma Ben-Kun. . Acta Physica Sinica, 2002, 51(9): 2022-2028. doi: 10.7498/aps.51.2022
Metrics
  • Abstract views:  6325
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2015
  • Accepted Date:  24 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map