Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in Single Crystal Growth Methods for the Novel Unconventional Superconductor UTe2

Xue Ziwei Yuan Dengpeng Tan Shiyong

Citation:

Advances in Single Crystal Growth Methods for the Novel Unconventional Superconductor UTe2

Xue Ziwei, Yuan Dengpeng, Tan Shiyong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • As a recently discovered unconventional superconductor, the heavy fermion compound UTe2 has garnered significant attention due to its potential spin-triplet superconducting pairing, high-field re-entrant superconducting phases, and unique quantum critical characteristics. However, experimental results on this system exhibit significant variations and contradictions, primarily due to differences in sample quality. Key unresolved issues include whether the system exhibits multi-component superconducting order parameters, whether time-reversal symmetry is spontaneously broken, and whether multiple field-induced superconducting phases share a common origin. These controversies have hindered an in-depth understanding of the intrinsic superconducting pairing mechanism in the UTe2 system.
    This paper reviews recent advances in single-crystal growth methods for UTe2, including chemical vapor transport (CVT), Te-flux, molten salt flux (MSF), and molten salt flux liquid transport (MSFLT). We systematically analyze how growth conditions influence superconductivity and crystal quality. Although the CVT method was initially employed in UTe2 studies, the samples grown by this method exhibit poor quality and significant compositional inhomogeneity, even within individual samples. Consequently, the CVT method has been progressively supplanted by the recently developed MSF method. In contrast, the MSF and MSFLT methods yield high-quality UTe2 single crystals with Tc as high as 2.1 K and RRR reaching up to 1000; however, the sample sizes are smaller compared to those grown by the CVT and Te-flux methods. Notably, MSF-grown samples occasionally contain magnetic impurities such as U7Te12, necessitating careful screening during sample collection. MSFLT combines the advantages of both CVT and MSF methods, enabling the growth of high-quality UTe2 single crystals while also producing larger sample sizes than MSF. Our findings highlight the importance of optimizing growth parameters such as the Te/U ratio, temperature gradients, and cooling rates. For instance, lower growth temperatures and precise control of the Te/U ratio significantly enhance Tc and sample quality. High-quality MSF and MSFLT samples have resolved several controversies, including clarifying the single-component nature of the superconducting order parameter and confirming the absence of time-reversal symmetry breaking in optimized samples.
    In conclusion, this review underscores the pivotal role of advanced single-crystal growth techniques in advancing the study of UTe2. Future research should focus on utilizing these high-quality UTe2 samples grown by MSF and MSFLT methods to accurately determine superconducting order parameters, elucidate mechanisms behind high-field re-entrant superconducting phases, and explore topological properties, such as potential Majorana fermions. These efforts will deepen our understanding of unconventional superconductivity, spin fluctuations, and quantum critical phenomena in UTe2 system.
  • [1]

    Ran S, Eckberg C, Ding Q P, Furukawa Y, Metz T, Saha S R, Liu I L, Zic M, Kim H, Paglione J 2019 Science 365684

    [2]

    Nakamine G, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2019 J. Phys. Soc. Jpn. 8843702

    [3]

    Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2021 Phys. Rev. B 103 L100503

    [4]

    Fujibayashi H, Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2022 J. Phys. Soc. Jpn. 91043705

    [5]

    Ran S, Jiao L 2021 Sci. Sin. Phys. Mech. Astron. 5193(in Chinese) [冉升, 焦琳2021中国科学(物理学力学天文学) 5193

    [6]

    Ran S, Liu I, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P 2019 Nat. Phys. 151250

    [7]

    Knebel G, Knafo W, Pourret A, Niu Q, Valiska M, Braithwaite D, Lapertot G, Nardone M, Zitouni A, Mishra S, Sheikin I, Seyfarth G, Brison J, Aoki D, Flouquet J 2019 J. Phys. Soc. Jpn. 88063707

    [8]

    Ikeda S, Sakai H, Aoki D, Homma Y, Yamamoto E, Nakamura A, Shiokawa Y, Haga Y, Onuki Y 2006 J. Phys. Soc. Jpn. 75116

    [9]

    Braithwaite D, Valiska M, Knebel G, Lapertot G, Brison J, Pourret A, Zhitomirsky M E, Flouquet J, Honda F, Aoki D 2019 Commun. Phys. 2147

    [10]

    Aoki D, Honda F, Knebel G, Braithwaite D, Nakamura A, Li D, Homma Y, Shimizu Y, Sato Y J, Brison J, Flouquet J 2020 J. Phys. Soc. Jpn. 89053705

    [11]

    Ran S, Kim H, Liu I, Saha S R, Hayes I, Metz T, Eo Y S, Paglione J, Butch N P 2020 Phys. Rev. B 101140503

    [12]

    Lin W, Campbell D J, Ran S, Liu I, Kim H, Nevidomskyy A H, Graf D, Butch N P, Paglione J 2020 npj Quantum Mater. 568

    [13]

    Hayes I M, Wei D S, Metz T, Zhang J, Eo Y S, Ran S, Saha S R, Collini J, Butch N P, Agterberg D F, Kapitulnik A, Paglione J 2021 Science 373797

    [14]

    Thomas S M, Santos F B, Christensen M H, Asaba T, Ronning F, Thompson J D, Bauer E D, Fernandes R M, Fabbris G, Rosa P F S 2020 Sci. Adv. 6 eabc8709

    [15]

    Aoki D, Brison J, Flouquet J, Ishida K, Knebel G, Tokunaga Y, Yanase Y 2022 J. Phys.-Condes. Matter 34243002

    [16]

    Thomas S M, Stevens C, Santos F B, Fender S S, Bauer E D, Ronning F, Thompson J D, Huxley A, Rosa P F S 2021 Phys. Rev. B 104224501

    [17]

    Rosa P F S, Weiland A, Fender S S, Scott B L, Ronning F, Thompson J D, Bauer E D, Thomas S M 2022 Commun. Mater. 333

    [18]

    Aoki D, Sakai H, Opletal P, Tokiwa Y, Ishizuka J, Yanase Y, Harima H, Nakamura A, Li D, Homma Y, Shimizu Y, Knebel G, Flouquet J, Haga Y 2022 J. Phys. Soc. Jpn. 91083704

    [19]

    Eaton A G, Weinberger T I, Popiel N J M, Wu Z, Hickey A J, Cabala A, Pospisil J, Prokleska J, Haidamak T, Bastien G, Opletal P, Sakai H, Haga Y, Nowell R, Benjamin S M, Sechovsky V, Lonzarich G G, Grosche F M, Valiska M 2024 Nat. Commun. 15223

    [20]

    Ajeesh M O, Bordelon M, Girod C, Mishra S, Ronning F, Bauer E D, Maiorov B, Thompson J D, Rosa P F S, Thomas S M 2023 Phys. Rev. X 13041019

    [21]

    Xu Y, Sheng Y, Yang Y 2019 Phys. Rev. Lett. 123217002

    [22]

    Stöwe K 1996 J. Solid. State. Chem. 127202

    [23]

    Ran S, Liu I L, Saha S R, Saraf P, Paglione J, Butch N P 2021 J. Vis. Exp. 173 e62563

    [24]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vališka M, Harima H, Flouquet J 2019 J. Phys. Soc. Jpn. 88043702

    [25]

    Jiao L, Howard S, Ran S, Wang Z, Rodriguez J O, Sigrist M, Wang Z, Butch N P, Madhavan V 2020 Nature 579523

    [26]

    Fujimori S, Kawasaki D, Takeda Y, Yamagami H, Nakamura A, Homma Y, Aoki D 2019 J. Phys. Soc. Jpn. 88103701

    [27]

    Miao L, Liu S, Xu Y, Kotta E C, Kang C, Ran S, Paglione J, Kotliar G, Butch N P, Denlinger J D, Wray L A 2020 Phys. Rev. Lett. 124076401

    [28]

    Cairns L P, Stevens C R, O'Neill C D, Huxley A 2020 J. Phys.-Condes. Matter. 32415602

    [29]

    Haga Y, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Sakai H 2022 J. Phys.-Condes. Matter. 34175601

    [30]

    Yang C, Guo J, Cai S, Zhou Y, Sidorov V A, Huang C, Long S, Shi Y, Chen Q, Tan S, Wu Q, Coleman P, Xiang T, Sun L 2022 Phys. Rev. B 10624503

    [31]

    Frank C E, Lewin S K, Salas G S, Czajka P, Hayes I M, Yoon H, Metz T, Paglione J, Singleton J, Butch N P 2024 Nat. Commun. 153378

    [32]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vali Ka M, Harima H, Flouquet J 2020 Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019) Okayama, Japan, September 23-28, 2019011065

    [33]

    Mineev V P 2022 J. Phys. Soc. Jpn. 91074601

    [34]

    Sundar S, Azari N, Goeks M R, Gheidi S, Abedi M, Yakovlev M, Dunsiger S R, Wilkinson J M, Blundell S J, Metz T E, Hayes I M, Saha S R, Lee S, Woods A J, Movshovich R, Thomas S M, Butch N P, Rosa P F S, Paglione J, Sonier J E 2023 Commun. Phys. 624

    [35]

    Theuss F, Shragai A, Grissonnanche G, Hayes I M, Saha S R, Eo Y S, Suarez A, Shishidou T, Butch N P, Paglione J, Ramshaw B J 2024 Nat. Phys. 201124

    [36]

    Yao S, Li T, Yue C, Xu X, Zhang B, Zhang C 2022 Cryst. Eng. Comm. 246262

    [37]

    Xie D H, Lai X C, Tan S Y, Zhang W, Liu Y, Feng W, Zhang Y, Liu Q, Zhu X G, Yuan B K, Fang Y 2016 Rare Metal Mater. Eng. 452128(in Chinese) [谢东华, 赖新春, 谭世勇, 张文, 刘毅, 冯卫, 张云, 刘琴, 朱燮刚, 袁秉凯, 方运2016稀有金属材料与工程452128]

    [38]

    Ji X, Liu Q, Feng W, Zhang Y, Chen Q, Liu Y, Hao Q, Wu J, Xue Z, Zhu X, Zhang Q, Luo X, Tan S, Lai X 2024 Phys. Rev. B 109075158

    [39]

    Sakai H, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Haga Y 2022 Phys. Rev. Mater. 6073401

    [40]

    Bdey S, Savvin S N, Bourguiba N F, Núñez P 2022 J. Solid State Chem. 305122644

    [41]

    Kwon M J, Binh N V, Cho S, Shim S B, Ryu S H, Jung Y J, Nam W H, Cho J Y, Park J H 2024 Electron. Mater. Lett. 20559

    [42]

    Chen H, Singh S, Mei H, Ren G, Zhao B, Surendran M, Wang Y, Mishra R, Kats M A, Ravichandran J 2024 J. Mater. Res. 391901

    [43]

    Matsumura H, Fujibayashi H, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2023 J. Phys. Soc. Jpn. 92063701

    [44]

    Ishihara K, Roppongi M, Kobayashi M, Imamura K, Mizukami Y, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Nat. Commun. 142966

    [45]

    Azari N, Yakovlev M, Rye N, Dunsiger S R, Sundar S, Bordelon M M, Thomas S M, Thompson J D, Rosa P F S, Sonier J E 2023 Phys. Rev. Lett. 131226504

    [46]

    Ishihara K, Kobayashi M, Imamura K, Konczykowski M, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Phys. Rev. Res. 5 L022002

    [47]

    Vališka M, Haidamak T, Cabala A, Pospíšil J, Bastien G, Sechovský V, Prokleška J, Yanagisawa T, Opletal P, Sakai H, Haga Y, Miyata A, Gorbunov D, Zherlitsyn S 2024 Phys. Rev. Mater. 8094415

    [48]

    Broyles C, Rehfuss Z, Siddiquee H, Zhu J A, Zheng K, Nikolo M, Graf D, Singleton J, Ran S 2023 Phys. Rev. Lett. 131036501

    [49]

    Aoki D, Sheikin I, McCollam A, Ishizuka J, Yanase Y, Lapertot G, Flouquet J, Knebel G 2023 J. Phys. Soc. Jpn. 92065002

    [50]

    Weinberger T I, Wu Z, Graf D E, Skourski Y, Cabala A, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Phys. Rev. Lett. 132266503

    [51]

    Serrano K, Taxil P 1999 J. Appl. Electrochem. 29497

    [52]

    Opletal P, Sakai H, Haga Y, Tokiwa Y, Yamamoto E, Kambe S, Tokunaga Y 2023 J. Phys. Soc. Jpn. 92034704

    [53]

    Wu Z, Weinberger T I, Chen J, Cabala A, Chichinadze D V, Shaffer D, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Hickey A J, Mancera-Ugarte M J, Benjamin S, Graf D E, Skourski Y, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Proc. Natl. Acad. Sci. U. S. A. 121 e2403067121

    [54]

    Aoki D 2024 J. Phys. Soc. Jpn. 93043703

    [55]

    Tokiwa Y, Sakai H, Kambe S, Opletal P, Yamamoto E, Kimata M, Awaji S, Sasaki T, Yanase Y, Haga Y, Tokunaga Y 2023 Phys. Rev. B 108144502

  • [1] Yang Jin-Ying, Wang Bin-Bin, Liu En-Ke. Berry curvature induced unconventional electronic transport behaviors in magnetic topological semimetals. Acta Physica Sinica, doi: 10.7498/aps.72.20230995
    [2] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, doi: 10.7498/aps.71.20220388
    [3] Qiu Hang-Qiang, Xie Xiao-Meng, Liu Yi, Li Yu-Ke, Xu Xiao-Feng, Jiao Wen-He. Crystal growth and electronic transport property of ternary Pd-based tellurides. Acta Physica Sinica, doi: 10.7498/aps.71.20221034
    [4] Li Jian-Xin. Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, doi: 10.7498/aps.70.20202180
    [5] Hu Jiang-Ping. Searching for new unconventional high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.70.20202122
    [6] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181818
    [7] Cheng Jin-Guang. Pressure-tuned magnetic quantum critical point and unconventional superconductivity. Acta Physica Sinica, doi: 10.7498/aps.66.037401
    [8] Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5. Acta Physica Sinica, doi: 10.7498/aps.64.097401
    [9] Zhu Shun-Ming, Gu Ran, Huang Shi-Min, Yao Zheng-Grong, Zhang Yang, Chen Bin, Mao Hao-Yuan, Gu Shu-Lin, Ye Jian-Dong, Zheng You-Dou. Influence and mechanism of H2 in the epitaxial growth of ZnO using metal-organic chemical vapor deposition method. Acta Physica Sinica, doi: 10.7498/aps.63.118103
    [10] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, doi: 10.7498/aps.56.6705
    [11] Zeng Chun-Lai, Tang Dong-Sheng, Liu Xing-Hui, Hai Kuo, Yang Yi, Yuan Hua-Jun, Xie Si-Shen. Controllable preparation of SnO2 one-dimensional nanostructures by chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.56.6531
    [12] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.53.4410
    [13] Zhang Yong-Jian, Chen Xian-Hui, Chen Zhao-Jia, Cao Lie-Zhao, Zang Bo-Yun. . Acta Physica Sinica, doi: 10.7498/aps.44.922
    [14] YANG BEI-FANG, M. J. G. LEE, J. M. PERZ, XU CUN-YI, ZUO JIAN, WANG LIANG-BIN, RUAN YAO-ZHONG, ZHANG YU-HENG. BARIUM-DOPING EFFECTS ON THE SUPERCONDUCTIVITY OF Bi2Sr2CaCu2Oy. Acta Physica Sinica, doi: 10.7498/aps.43.308
    [15] CHEN XIAN-HUI, CHEN ZU-YAO, QIAN YI-TAI, GU ZHEN-TIAN, CHENG XIANG-AI, SHA JIAN, WANG KE-QIN, ZHANG QI-RUI. PHASE TRANSFORMATION AND SUPERCONDUCTIVITY OF 110K SUPERCONDUCTOR IN (Bi, Pb)-Sr-Ca-Cu-O SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.40.297
    [16] XIA JIAN-SHENO, CAO LIE-ZHAO, XU CHEN, WANG SHUN-XI, CHEN JIAN, CHEN ZU-YAO, ZHANG QI-RUI. THE RELATION BETWEEN SUPERCONDUCTIVITY AND STRUCTURE IN (Bi,Pb)4Ca3Sr3Cu4Oy SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.38.1026
    [17] LIANG JING-KUI, ZHANG YU-LING, HUANG JIU-QI, XIE SI-SHEN, CHE GUAN-CHAN, CHEN XiANG-RONG, NI YONG-MIN, ZHENG DONG-NING, JIA SHUN-LIAN. THE CRYSTAL STRUCTURES AND SUPERCONDUCTIVITY OF A NEW SERIES OF SUPERCONDUCTING PHASES. Acta Physica Sinica, doi: 10.7498/aps.38.264
    [18] Cao Xiao-wen;Zhao Dian-sheng;Zhang Yu-heng. HALL EFFECTS AND SUPERCONDUCTIVITY OF ANORPHOUS InSb AND ITS METASTABLE INTERMEDIATE PHASES IN THE PROCESS OF THE CRYSTALLIZATION PHASE TRANSITION. Acta Physica Sinica, doi: 10.7498/aps.36.1041
    [19] WANG WEI, YU ZHENG, SUN YUAN-SHAN, YAO XI-XIAN. THE SUPERCONDUCTIVITY OF 2-DIMENSIONAL GRANULAR FILMS. Acta Physica Sinica, doi: 10.7498/aps.35.1081
    [20] ZHU ZAI-WAN, JIANG WEN-ZHI. HIGH TEMPERATURE SUPERCONDUCTIVITY IN METALLIC HYDROGEN. Acta Physica Sinica, doi: 10.7498/aps.30.271
Metrics
  • Abstract views:  24
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  21 February 2025

/

返回文章
返回
Baidu
map