Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in single crystal growth methods for novel unconventional superconductor UTe2

XUE Ziwei YUAN Dengpeng TAN Shiyong

Citation:

Advances in single crystal growth methods for novel unconventional superconductor UTe2

XUE Ziwei, YUAN Dengpeng, TAN Shiyong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Heavy fermion compound UTe2, as a recently discovered unconventional superconductor, has received significant attention due to its potential spin-triplet superconducting pairing, high-field re-entrant superconducting phases, and unique quantum critical characteristics. However, experimental results of this system show significant changes and discrepancies, primarily due to difference in sample quality. The key unresolved issues include whether the system exhibits multi-component superconducting order parameters, whether time-reversal symmetry is spontaneously broken, and whether multiple field-induced superconducting phases share a common origin. These unsolved issues hinder an in-depth understanding of the intrinsic superconducting pairing mechanism in the UTe2 system.This paper reviews recent advances in single-crystal growth methods for UTe2, including chemical vapor transport (CVT), Te-flux, molten salt flux (MSF), and molten salt flux liquid transport (MSFLT). We systematically analyze how growth conditions influence superconductivity and crystal quality. Although the CVT method was initially employed in UTe2 studies, the samples grown by this method exhibit poor quality and significant compositional inhomogeneity, even in individual samples. Consequently, the CVT method has been progressively supplanted by the recently developed MSF method. In contrast, the MSF method and MSFLT method yield high-quality UTe2 single crystals with Tc achieving a value as high as 2.1 K and residual resistivity ratio (RRR) reaching up to 1000; however, the sample sizes are smaller than those grown by the CVT and Te-flux methods. Notably, MSF-grown samples occasionally contain magnetic impurities such as U7Te12, so careful screening is required in the sample collection process. The MSFLT combines the advantages of CVT and MSF methods to grow high-quality UTe2 single crystals while producing larger sample sizes than MSF. Our research findings highlight the importance of optimizing growth parameters such as Te/U ratio, temperature gradient, and cooling rate. For instance, lower growth temperature and precise control of the Te/U ratio can significantly enhance Tc and sample quality. Several controversies have been identified regarding high-quality MSF and MSFLT samples, including clarifying the single-component nature of the superconducting order parameter and confirming the absence of time-reversal symmetry breaking in optimized samples.This review underscores the pivotal role of advanced single-crystal growth techniques in advancing the study of UTe2. Future research should focus on utilizing these high-quality UTe2 samples grown by MSF and MSFLT methods to accurately determine superconducting order parameters, elucidate mechanisms behind high-field re-entrant superconducting phases, and explore topological properties, such as potential Majorana fermions. These efforts will deepen our understanding of unconventional superconductivity, spin fluctuations, and quantum critical phenomena in the UTe2 system.
  • 图 1  UTe2单晶的生长方法示意图 (a) Te-flux法; (b) MSF法; (c) CVT法; (d) MSFLT法.

    Figure 1.  Illustration of the single crystal growth methods for UTe2: (a) Te-flux method; (b) MSF method; (c) CVT method; (d) MSFLT method.

    图 2  UTe2超导电性的首次发现 (a) 电阻率随温度变化; (b) 低温比热数据中的电子贡献随温度变化. 数据来源于文献[1].

    Figure 2.  First discovery of UTe2 superconductivity: (a) Temperature dependence of resistivity; (b) temperature dependence of electric contribution from low temperature specific heat data. The data are taken from Ref.[1].

    图 3  (a)不同起始原料摩尔比MTe/U样品的电阻率测量结果[28], 并与Ran等[1]和Hayes等[13]对比; (b) Tc = 2 K样品(C6)的比热测量结果, 插图为样品照片[28]

    Figure 3.  (a) Resistivity of samples with different initial molar ratios MTe/U [28] and comparison with those reported by Ran et al. [1] and Hayes et al. [13]; (b) specific heat data of sample C6 with Tc = 2 K, and the inset shows a sample image [28].

    图 4  (a)不同生长温度获得UTe2样品的比热数据[17]; (b) 1060—1000 ℃温度梯度下生长的UTe2样品中测得Tc附近的极化Kerr角度演化[13]. 数据来源于文献[17,13].

    Figure 4.  (a) Specific heat data of UTe2 samples obtained at different growth temperatures [17]; (b) polar Kerr angle evolution near Tc in a UTe2 sample grown under a temperature gradient of 1060–1000 ℃[13]. The data are taken from Ref.[17,13].

    图 5  不同生长温度下获得UTe2样品的照片, 起始原料摩尔比MTe/U = 2, 标注为高温端温度 [36] (a) 810 ℃; (b) 860 ℃; (c) 930 ℃; (d) 1010 ℃; (e) 1060 ℃. 出自文献[36], 已获得授权.

    Figure 5.  Photos of UTe2 samples obtained at different growth temperatures, with the molar ratio of the starting materials (MTe/U) set to 2, are labeled with the high-end temperatures [36]: (a) 810 ℃; (b) 860 ℃; (c) 930 ℃; (d) 1010 ℃; (e) 1060 ℃. Reproduced with permission from Ref.[36].

    图 6  (a) Te-flux样品照片[32]; (b) CVT样品照片[32]; (c)电阻率测量结果对比; (d)比热测量结果对比. (c)和(d)的数据来源于文献[24].

    Figure 6.  (a) Photos of Te-flux samples[32]; (b) photos of CVT samples[32]; (c) comparison of resistivity data; (d) comparison of specific heat data. The data of (c) and (d) are taken from Ref.[24].

    图 7  (a) MSF与CVT样品的归一化电阻率对比; (b) MSF方法生长获得U-Te体系产物与原料Te/U的关系. 数据来源于文献[39].

    Figure 7.  (a) Normalized resistivity comparison of MSF and CVT samples; (b) the relationship between the product of U-Te system grown by MSF method and raw material Te/U. The data are taken from Ref.[39].

    图 8  MSF方法生长高质量UTe2单晶样品的高磁场超导相图[53]

    Figure 8.  High magnetic field superconducting phase diagram of high quality UTe2 single crystal sample grown by MSF method [53].

    图 9  (a) MSFLT生长的UTe2单晶样品照片, 右上角插图为样品嵌于混合盐中的照片; (b) MSFLT样品的比热测量结果[54]

    Figure 9.  (a) Photograph of MSFLT-grown UTe2 single crystal samples, the inset in the upper right corner shows the sample embedded in the flux; (b) specific heat data of a MSFLT sample [54].

    表 1  CVT起始原料摩尔比MTe/U对UTe2样品实际成分和Tc的影响[28]

    Table 1.  The impact of the molar ratio of MTe/U in CVT starting materials on the actual composition and Tc of UTe2 samples [28].

    样品分组起始原料
    摩尔比MTe/U
    EDX测得的
    MTe/U范围
    电阻率
    测得的Tc
    A1.711.46—1.501.74 K
    B2.141.79—2.06无超导
    C1.851.72—1.872.00 K
    DownLoad: CSV

    表 2  CVT生长温度对UTe2单晶的Tc和样品质量的影响[17]

    Table 2.  Effect of CVT growth temperature on Tc and sample quality of UTe2 single crystals [17].

    样品
    编号
    生长
    温度/℃
    比热
    测得的
    Tc/K
    RRR γ*/γN
    (γN = 121
    mJ·mol–1·K–1)
    s1 1060—1000 1.64
    1.48
    30—40 0.54
    s2 950—860 1.68 0.42
    s3 925—835 1.77 0.36
    s4 875—785 1.85 55 0.34
    s5 825—735 1.95 70 0.21
    s6 800—710 2.00 88 0.19
    s7 775—685 No SC 2
    DownLoad: CSV

    表 3  MSF方法工艺参数对UTe2单晶Tc和样品质量的影响[39]

    Table 3.  Effect of MSF process parameters on the Tc and sample quality of UTe2 single crystals [39].

    样品编号 原料比例 Tf/℃ Tc/K RRR 备注
    MTe/U MSalt/U
    M1 2 29 650 1.7—1.8 40—60
    M2 1.93 37 650 1.9—2.0 60—80
    M3 1.92 36 650 1.95—2.0 30—40
    M4 1.90 40 650 1.8—1.95 50—60
    M5 1.90 67 650 1.9—2.05 50—60
    M6 1.8 21 650 产物为U7Te12
    M6 a 1.8 40 650 2.0—2.1 80—130 主要产物为U7Te12
    M7 1.71 60 650 2.1 170—1000 主要产物为U7Te12
    H1 2.0 48 700 1.6 11—12 离心去除盐
    H2 1.95 42 700 1.75—1.9 35—60
    L1 1.95 38 600 1.6—1.8 20—30
    L2 1.90 44 600 2.1—2.2 65—70 聚集晶体
    DownLoad: CSV

    表 4  不同生长方法获得UTe2单晶的Tc和样品质量对比[54]

    Table 4.  Comparison of Tc and sample quality of UTe2 single crystals grown by different methods [54].

    生长方法原料比例MTe/U助熔剂/输运剂生长温度/℃Tc/KRRRγ*/γN
    Te-flux3.55Te10501.083.6
    CVT2.00I2950—8502.5
    CVT1.50I21050—9901.65140.61
    CVT1.40I2780—6802.01490.13
    MSF1.80NaCl+KCl950<1.7220.78
    MSF1.65NaCl+KCl9502.062200.046
    MSFLT1.50NaCl+KCl750—6502.061790.124
    MSFLT1.65NaCl+KCl750—6502.098000.034
    DownLoad: CSV

    表 5  不同生长方法的工艺特点与优缺点.

    Table 5.  Process characteristics, advantages and disadvantages of different growth methods.

    方法 最优的
    工艺参数
    最佳的
    超导样品
    影响因素 优点 缺点
    CVT 原料比例MTe/U = 1.5;
    生长温度梯度800—710 ℃.
    Tc = 2.0 K;
    RRR = 88.
    原料比例MTe/U;
    生长温度梯度.
    生长温度较低;
    样品尺寸大.
    样品质量较差;
    成分均匀性差.
    Te-flux 原料比例MTe/U = 3.55;
    生长温度1050 ℃;
    离心温度950 ℃.
    Tc = 1.1 K;
    RRR = 4.
    原料比例MTe/U;
    生长温度;
    降温速率.
    工艺简单;
    样品产量高;
    样品尺寸大.
    几乎不超导;
    样品质量差;
    生长温度高.
    MSF 原料比例MTe/U = 1.71;
    原料比例MSalt/U = 60;
    生长温度950 ℃;
    退火温度650 ℃.
    Tc = 2.1 K;
    RRR = 1000.
    原料比例MTe/U;
    原料比例MSalt/U;
    退火温度;
    降温速率;
    助熔剂盐的含水量.
    样品质量高;
    生长温度较低.
    产物伴随有磁性杂质U7Te12;
    样品尺寸小.
    MSFLT 原料比例MTe/U = 1.65;
    生长温度梯度750—670 ℃.
    Tc = 2.09 K;
    RRR = 800.
    原料比例MTe/U;
    助熔剂盐的含水量.
    样品质量高;
    生长温度低.
    样品尺寸较小.
    DownLoad: CSV
    Baidu
  • [1]

    Ran S, Eckberg C, Ding Q P, Furukawa Y, Metz T, Saha S R, Liu I L, Zic M, Kim H, Paglione J 2019 Science 365 684Google Scholar

    [2]

    Nakamine G, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2019 J. Phys. Soc. Jpn. 88 43702Google Scholar

    [3]

    Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2021 Phys. Rev. B 103 L100503Google Scholar

    [4]

    Fujibayashi H, Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2022 J. Phys. Soc. Jpn. 91 043705Google Scholar

    [5]

    冉升, 焦琳 2021 中国科学: 物理学 力学 天文学) 51 047406Google Scholar

    Ran S, Jiao L 2021 Sci. Sin. -Phys. Mech. Astron. 51 047406Google Scholar

    [6]

    Ran S, Liu I, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P 2019 Nat. Phys. 15 1250Google Scholar

    [7]

    Knebel G, Knafo W, Pourret A, Niu Q, Valiska M, Braithwaite D, Lapertot G, Nardone M, Zitouni A, Mishra S, Sheikin I, Seyfarth G, Brison J, Aoki D, Flouquet J 2019 J. Phys. Soc. Jpn. 88 063707Google Scholar

    [8]

    Ikeda S, Sakai H, Aoki D, Homma Y, Yamamoto E, Nakamura A, Shiokawa Y, Haga Y, Onuki Y 2006 J. Phys. Soc. Jpn. 75 116Google Scholar

    [9]

    Braithwaite D, Valiska M, Knebel G, Lapertot G, Brison J, Pourret A, Zhitomirsky M E, Flouquet J, Honda F, Aoki D 2019 Commun. Phys. 2 147Google Scholar

    [10]

    Aoki D, Honda F, Knebel G, Braithwaite D, Nakamura A, Li D, Homma Y, Shimizu Y, Sato Y J, Brison J, Flouquet J 2020 J. Phys. Soc. Jpn. 89 053705Google Scholar

    [11]

    Ran S, Kim H, Liu I, Saha S R, Hayes I, Metz T, Eo Y S, Paglione J, Butch N P 2020 Phys. Rev. B 101 140503Google Scholar

    [12]

    Lin W, Campbell D J, Ran S, Liu I, Kim H, Nevidomskyy A H, Graf D, Butch N P, Paglione J 2020 npj Quantum Mater. 5 68Google Scholar

    [13]

    Hayes I M, Wei D S, Metz T, Zhang J, Eo Y S, Ran S, Saha S R, Collini J, Butch N P, Agterberg D F, Kapitulnik A, Paglione J 2021 Science 373 797Google Scholar

    [14]

    Thomas S M, Santos F B, Christensen M H, Asaba T, Ronning F, Thompson J D, Bauer E D, Fernandes R M, Fabbris G, Rosa P F S 2020 Sci. Adv. 6 eabc8709Google Scholar

    [15]

    Aoki D, Brison J, Flouquet J, Ishida K, Knebel G, Tokunaga Y, Yanase Y 2022 J. Phys. Condens. Matter 34 243002Google Scholar

    [16]

    Thomas S M, Stevens C, Santos F B, Fender S S, Bauer E D, Ronning F, Thompson J D, Huxley A, Rosa P F S 2021 Phys. Rev. B 104 224501Google Scholar

    [17]

    Rosa P F S, Weiland A, Fender S S, Scott B L, Ronning F, Thompson J D, Bauer E D, Thomas S M 2022 Commun. Mater. 3 33Google Scholar

    [18]

    Aoki D, Sakai H, Opletal P, Tokiwa Y, Ishizuka J, Yanase Y, Harima H, Nakamura A, Li D, Homma Y, Shimizu Y, Knebel G, Flouquet J, Haga Y 2022 J. Phys. Soc. Jpn. 91 083704Google Scholar

    [19]

    Eaton A G, Weinberger T I, Popiel N J M, Wu Z, Hickey A J, Cabala A, Pospisil J, Prokleska J, Haidamak T, Bastien G, Opletal P, Sakai H, Haga Y, Nowell R, Benjamin S M, Sechovsky V, Lonzarich G G, Grosche F M, Valiska M 2024 Nat. Commun. 15 223Google Scholar

    [20]

    Ajeesh M O, Bordelon M, Girod C, Mishra S, Ronning F, Bauer E D, Maiorov B, Thompson J D, Rosa P F S, Thomas S M 2023 Phys. Rev. X 13 041019

    [21]

    Xu Y, Sheng Y, Yang Y 2019 Phys. Rev. Lett. 123 217002Google Scholar

    [22]

    Stöwe K 1996 J. Solid. State. Chem. 127 202Google Scholar

    [23]

    Ran S, Liu I L, Saha S R, Saraf P, Paglione J, Butch N P 2021 J. Vis. Exp. 173 e62563

    [24]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vališka M, Harima H, Flouquet J 2019 J. Phys. Soc. Jpn. 88 043702Google Scholar

    [25]

    Jiao L, Howard S, Ran S, Wang Z, Rodriguez J O, Sigrist M, Wang Z, Butch N P, Madhavan V 2020 Nature 579 523Google Scholar

    [26]

    Fujimori S, Kawasaki D, Takeda Y, Yamagami H, Nakamura A, Homma Y, Aoki D 2019 J. Phys. Soc. Jpn. 88 103701Google Scholar

    [27]

    Miao L, Liu S, Xu Y, Kotta E C, Kang C, Ran S, Paglione J, Kotliar G, Butch N P, Denlinger J D, Wray L A 2020 Phys. Rev. Lett. 124 076401Google Scholar

    [28]

    Cairns L P, Stevens C R, O'Neill C D, Huxley A 2020 J. Phys. Condens. Matter 32 415602Google Scholar

    [29]

    Haga Y, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Sakai H 2022 J. Phys. Condens. Matter 34 175601Google Scholar

    [30]

    Yang C, Guo J, Cai S, Zhou Y, Sidorov V A, Huang C, Long S, Shi Y, Chen Q, Tan S, Wu Q, Coleman P, Xiang T, Sun L 2022 Phys. Rev. B 106 24503Google Scholar

    [31]

    Frank C E, Lewin S K, Salas G S, Czajka P, Hayes I M, Yoon H, Metz T, Paglione J, Singleton J, Butch N P 2024 Nat. Commun. 15 3378Google Scholar

    [32]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vali Ka M, Harima H, Flouquet J 2020 Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019) Okayama, Japan, September 23-28, 2019 011065

    [33]

    Mineev V P 2022 J. Phys. Soc. Jpn. 91 074601Google Scholar

    [34]

    Sundar S, Azari N, Goeks M R, Gheidi S, Abedi M, Yakovlev M, Dunsiger S R, Wilkinson J M, Blundell S J, Metz T E, Hayes I M, Saha S R, Lee S, Woods A J, Movshovich R, Thomas S M, Butch N P, Rosa P F S, Paglione J, Sonier J E 2023 Commun. Phys. 6 24Google Scholar

    [35]

    Theuss F, Shragai A, Grissonnanche G, Hayes I M, Saha S R, Eo Y S, Suarez A, Shishidou T, Butch N P, Paglione J, Ramshaw B J 2024 Nat. Phys. 20 1124Google Scholar

    [36]

    Yao S, Li T, Yue C, Xu X, Zhang B, Zhang C 2022 CrystEngComm 24 6262Google Scholar

    [37]

    谢东华, 赖新春, 谭世勇, 张文, 刘毅, 冯卫, 张云, 刘琴, 朱燮刚, 袁秉凯, 方运 2016 稀有金属材料与工程 45 2128

    Xie D H, Lai X C, Tan S Y, Zhang W, Liu Y, Feng W, Zhang Y, Liu Q, Zhu X G, Yuan B K, Fang Y 2016 Rare Met. Mater. Eng. 45 2128

    [38]

    Ji X, Liu Q, Feng W, Zhang Y, Chen Q, Liu Y, Hao Q, Wu J, Xue Z, Zhu X, Zhang Q, Luo X, Tan S, Lai X 2024 Phys. Rev. B 109 075158Google Scholar

    [39]

    Sakai H, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Haga Y 2022 Phys. Rev. Mater. 6 073401Google Scholar

    [40]

    Bdey S, Savvin S N, Bourguiba N F, Núñez P 2022 J. Solid State Chem. 305 122644Google Scholar

    [41]

    Kwon M J, Binh N V, Cho S, Shim S B, Ryu S H, Jung Y J, Nam W H, Cho J Y, Park J H 2024 Electron. Mater. Lett. 20 559Google Scholar

    [42]

    Chen H, Singh S, Mei H, Ren G, Zhao B, Surendran M, Wang Y, Mishra R, Kats M A, Ravichandran J 2024 J. Mater. Res. 39 1901Google Scholar

    [43]

    Matsumura H, Fujibayashi H, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2023 J. Phys. Soc. Jpn. 92 063701Google Scholar

    [44]

    Ishihara K, Roppongi M, Kobayashi M, Imamura K, Mizukami Y, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Nat. Commun. 14 2966Google Scholar

    [45]

    Azari N, Yakovlev M, Rye N, Dunsiger S R, Sundar S, Bordelon M M, Thomas S M, Thompson J D, Rosa P F S, Sonier J E 2023 Phys. Rev. Lett. 131 226504Google Scholar

    [46]

    Ishihara K, Kobayashi M, Imamura K, Konczykowski M, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Phys. Rev. Res. 5 L022002Google Scholar

    [47]

    Vališka M, Haidamak T, Cabala A, Pospíšil J, Bastien G, Sechovský V, Prokleška J, Yanagisawa T, Opletal P, Sakai H, Haga Y, Miyata A, Gorbunov D, Zherlitsyn S 2024 Phys. Rev. Mater. 8 094415Google Scholar

    [48]

    Broyles C, Rehfuss Z, Siddiquee H, Zhu J A, Zheng K, Nikolo M, Graf D, Singleton J, Ran S 2023 Phys. Rev. Lett. 131 036501Google Scholar

    [49]

    Aoki D, Sheikin I, McCollam A, Ishizuka J, Yanase Y, Lapertot G, Flouquet J, Knebel G 2023 J. Phys. Soc. Jpn. 92 065002Google Scholar

    [50]

    Weinberger T I, Wu Z, Graf D E, Skourski Y, Cabala A, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Phys. Rev. Lett. 132 266503Google Scholar

    [51]

    Serrano K, Taxil P 1999 J. Appl. Electrochem. 29 497Google Scholar

    [52]

    Opletal P, Sakai H, Haga Y, Tokiwa Y, Yamamoto E, Kambe S, Tokunaga Y 2023 J. Phys. Soc. Jpn. 92 034704Google Scholar

    [53]

    Wu Z, Weinberger T I, Chen J, Cabala A, Chichinadze D V, Shaffer D, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Hickey A J, Mancera-Ugarte M J, Benjamin S, Graf D E, Skourski Y, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Proc. Natl. Acad. Sci. U. S. A. 121 e2403067121Google Scholar

    [54]

    Aoki D 2024 J. Phys. Soc. Jpn. 93 043703Google Scholar

    [55]

    Tokiwa Y, Sakai H, Kambe S, Opletal P, Yamamoto E, Kimata M, Awaji S, Sasaki T, Yanase Y, Haga Y, Tokunaga Y 2023 Phys. Rev. B 108 144502Google Scholar

  • [1] Yang Jin-Ying, Wang Bin-Bin, Liu En-Ke. Berry curvature induced unconventional electronic transport behaviors in magnetic topological semimetals. Acta Physica Sinica, doi: 10.7498/aps.72.20230995
    [2] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, doi: 10.7498/aps.71.20220388
    [3] Qiu Hang-Qiang, Xie Xiao-Meng, Liu Yi, Li Yu-Ke, Xu Xiao-Feng, Jiao Wen-He. Crystal growth and electronic transport property of ternary Pd-based tellurides. Acta Physica Sinica, doi: 10.7498/aps.71.20221034
    [4] Li Jian-Xin. Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, doi: 10.7498/aps.70.20202180
    [5] Hu Jiang-Ping. Searching for new unconventional high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.70.20202122
    [6] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181818
    [7] Cheng Jin-Guang. Pressure-tuned magnetic quantum critical point and unconventional superconductivity. Acta Physica Sinica, doi: 10.7498/aps.66.037401
    [8] Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5. Acta Physica Sinica, doi: 10.7498/aps.64.097401
    [9] Zhu Shun-Ming, Gu Ran, Huang Shi-Min, Yao Zheng-Grong, Zhang Yang, Chen Bin, Mao Hao-Yuan, Gu Shu-Lin, Ye Jian-Dong, Zheng You-Dou. Influence and mechanism of H2 in the epitaxial growth of ZnO using metal-organic chemical vapor deposition method. Acta Physica Sinica, doi: 10.7498/aps.63.118103
    [10] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, doi: 10.7498/aps.56.6705
    [11] Zeng Chun-Lai, Tang Dong-Sheng, Liu Xing-Hui, Hai Kuo, Yang Yi, Yuan Hua-Jun, Xie Si-Shen. Controllable preparation of SnO2 one-dimensional nanostructures by chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.56.6531
    [12] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.53.4410
    [13] Zhang Yong-Jian, Chen Xian-Hui, Chen Zhao-Jia, Cao Lie-Zhao, Zang Bo-Yun. . Acta Physica Sinica, doi: 10.7498/aps.44.922
    [14] YANG BEI-FANG, M. J. G. LEE, J. M. PERZ, XU CUN-YI, ZUO JIAN, WANG LIANG-BIN, RUAN YAO-ZHONG, ZHANG YU-HENG. BARIUM-DOPING EFFECTS ON THE SUPERCONDUCTIVITY OF Bi2Sr2CaCu2Oy. Acta Physica Sinica, doi: 10.7498/aps.43.308
    [15] CHEN XIAN-HUI, CHEN ZU-YAO, QIAN YI-TAI, GU ZHEN-TIAN, CHENG XIANG-AI, SHA JIAN, WANG KE-QIN, ZHANG QI-RUI. PHASE TRANSFORMATION AND SUPERCONDUCTIVITY OF 110K SUPERCONDUCTOR IN (Bi, Pb)-Sr-Ca-Cu-O SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.40.297
    [16] XIA JIAN-SHENO, CAO LIE-ZHAO, XU CHEN, WANG SHUN-XI, CHEN JIAN, CHEN ZU-YAO, ZHANG QI-RUI. THE RELATION BETWEEN SUPERCONDUCTIVITY AND STRUCTURE IN (Bi,Pb)4Ca3Sr3Cu4Oy SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.38.1026
    [17] LIANG JING-KUI, ZHANG YU-LING, HUANG JIU-QI, XIE SI-SHEN, CHE GUAN-CHAN, CHEN XiANG-RONG, NI YONG-MIN, ZHENG DONG-NING, JIA SHUN-LIAN. THE CRYSTAL STRUCTURES AND SUPERCONDUCTIVITY OF A NEW SERIES OF SUPERCONDUCTING PHASES. Acta Physica Sinica, doi: 10.7498/aps.38.264
    [18] Cao Xiao-wen;Zhao Dian-sheng;Zhang Yu-heng. HALL EFFECTS AND SUPERCONDUCTIVITY OF ANORPHOUS InSb AND ITS METASTABLE INTERMEDIATE PHASES IN THE PROCESS OF THE CRYSTALLIZATION PHASE TRANSITION. Acta Physica Sinica, doi: 10.7498/aps.36.1041
    [19] WANG WEI, YU ZHENG, SUN YUAN-SHAN, YAO XI-XIAN. THE SUPERCONDUCTIVITY OF 2-DIMENSIONAL GRANULAR FILMS. Acta Physica Sinica, doi: 10.7498/aps.35.1081
    [20] ZHU ZAI-WAN, JIANG WEN-ZHI. HIGH TEMPERATURE SUPERCONDUCTIVITY IN METALLIC HYDROGEN. Acta Physica Sinica, doi: 10.7498/aps.30.271
Metrics
  • Abstract views:  278
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2024
  • Accepted Date:  06 February 2025
  • Available Online:  21 February 2025

/

返回文章
返回
Baidu
map