Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5

Du Zeng-Yi Fang De-Long Wang Zhen-Yu Du Guan Yang Xiong Yang Huan Gu Gen-Da Wen Hai-Hu

Citation:

Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5

Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • FeSe0.5Te0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73 0.03 which is consistent with the lattice constant 3.78 . The Se and Te atoms with a height difference of about 0.35 are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconducting state. According to the positions of coherence peaks, we determine the superconducting gap 2 = 5.5 meV, and the reduced gap 2/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature /kBTc 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are very different in the areas of Te-atom cluster and Se-atom cluster, and the difference extends to the energy of more than 300 meV. The differential conductance mapping has very little information about the quasi-particle interference of the superconducting state, which may result from the other strong scattering mechanism in the sample.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00102), the National Natural Science Foundation of China (Grant No. 11374144). Work at Brookhaven National Laboratory was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U. S. Department of Energy, under Contract DE-AC02-98CH10886.
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Ame. Chem. Soc. 130 3296

    [2]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [3]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [4]

    Jiang H, Sun Y L, Xu Z A, Cao G H 2013 Chin. Phys. B 22 087410

    [5]

    Luo H Q 2014 Physics 43 430 (in Chinese) [罗会仟 2014 物理 43 430]

    [6]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [7]

    Wen H H, Li S L 2011 Annu. Rev. Condens.Matter Phys. 2 121

    [8]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [9]

    Zhao Z X, Yu L 2013 Basic reflearch on the physical properties of iron-based superconductor (Shanghai: Shanghai Scientific and Technical Publishers) p163 (in Chinese) [赵忠贤, 于渌 2013 铁基超导体物性基础研究(上海: 上海科学技术出版社) 第163页]

    [10]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phy. Rev. B 84 184512

    [11]

    Cai P Zhou X D, Ruan W, Wang A F, Chen X H, Lee D H, Wang Y Y 2013 Nature Commun 4 1596

    [12]

    Zhou X D, Cai P, Wang Y Y 2013 Chin. Phys. B 22 087413

    [13]

    Yi M Zhang Y, Liu Z K, Ding X X, Chu J H Kemper A F, N. Plonka N Moritz B, Hashimoto M, Mo S K, Hussain Z, Devereaux T P Fisher I R, Wen H H, Shen Z X Lu D H 2013 Nature Common. 5 3711

    [14]

    Fernandes R M, Chubukov A V Schmalian J 2014 Nature Phys. 10 97

    [15]

    Yu S L and Li J X 2013 Chin. Phys. B 22 087411

    [16]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [17]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [18]

    Yang H, Wang Z Y, Fang D L, Deng Q, Wang Q H, Xiang Y Y, Yang Y, Wen H H 2013 Nature Common. 4 2749

    [19]

    Zhu X Y, Han F, Mu G, Cheng P, Shen B, Zeng B, Wen H H 2009 Phys. Rev. B 79 220512

    [20]

    Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M H, Qian B, Vehstedt E K, Yang J H, Pham H M, Spinu L, Mao Z Q 2009 Phys. Rev. Lett. 102 247001

    [21]

    Wang Q Yan, Li Z, Zhang W H, Zang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [22]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [23]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Hilbert von Löhneysen H V, Shibauchi T, Matsuda Y 2014 PNAS 111 16309

    [24]

    Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J Prokeš K Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Y. Qiu Y Thampy V, Savici A T, Rodriguez J A Broholm C 2010 Nature Mater 9 716

    [25]

    Hanaguri T, Niitaka S Kuroki K Takagi H 2010 Science 328 474

    [26]

    Lin W Z Li Q, Sales B C Jesse S Sefat A S Kalinin S V, Pan M H 2013 ACS Nano 7 2634

    [27]

    Wen J S, Xu G Y, Xu Z J, Lin Z W, Li Q, Chen Y, Chi S X, Gu G D, Tranquada J M2010 Phys. Rev. B 81 100513(R)

    [28]

    Wang Z Y 2014 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [王震宇 2014 博士学位论文(北京: 中科院物理研究所)]

    [29]

    Sun Y, Tsuchiya Y, Taen T, Yamada T, Pyon S, Sugimoto A, Ekino T, Shi Z X, Tamegai T 2014 Sci. Rep. 4 4585

    [30]

    Yang H, Wang Z Y, Fang D L, Li S, Kariyado T, Chen G F, Ogata M, Das T, Balatsky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [31]

    Zhou X D, Cai P, Wang A F, Ruan W, Ye C, Chen X H, You Y Z, Weng Z Y, Wang Y Y 2012 Phys. Rev. Lett. 109 037002

    [32]

    Wang Z Y, Fang D L, Deng Q, Yang H, Ren C, Wen H H 2014 Phys. Rev. B 89 214515

    [33]

    Wang Z Y, Yang H, Fang D L, Shen B, Wang Q H, Shan L, Zhang C L, Dai P C, Wen H H 2013 Nature Phys. 9 42

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Ame. Chem. Soc. 130 3296

    [2]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [3]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [4]

    Jiang H, Sun Y L, Xu Z A, Cao G H 2013 Chin. Phys. B 22 087410

    [5]

    Luo H Q 2014 Physics 43 430 (in Chinese) [罗会仟 2014 物理 43 430]

    [6]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [7]

    Wen H H, Li S L 2011 Annu. Rev. Condens.Matter Phys. 2 121

    [8]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [9]

    Zhao Z X, Yu L 2013 Basic reflearch on the physical properties of iron-based superconductor (Shanghai: Shanghai Scientific and Technical Publishers) p163 (in Chinese) [赵忠贤, 于渌 2013 铁基超导体物性基础研究(上海: 上海科学技术出版社) 第163页]

    [10]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phy. Rev. B 84 184512

    [11]

    Cai P Zhou X D, Ruan W, Wang A F, Chen X H, Lee D H, Wang Y Y 2013 Nature Commun 4 1596

    [12]

    Zhou X D, Cai P, Wang Y Y 2013 Chin. Phys. B 22 087413

    [13]

    Yi M Zhang Y, Liu Z K, Ding X X, Chu J H Kemper A F, N. Plonka N Moritz B, Hashimoto M, Mo S K, Hussain Z, Devereaux T P Fisher I R, Wen H H, Shen Z X Lu D H 2013 Nature Common. 5 3711

    [14]

    Fernandes R M, Chubukov A V Schmalian J 2014 Nature Phys. 10 97

    [15]

    Yu S L and Li J X 2013 Chin. Phys. B 22 087411

    [16]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [17]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [18]

    Yang H, Wang Z Y, Fang D L, Deng Q, Wang Q H, Xiang Y Y, Yang Y, Wen H H 2013 Nature Common. 4 2749

    [19]

    Zhu X Y, Han F, Mu G, Cheng P, Shen B, Zeng B, Wen H H 2009 Phys. Rev. B 79 220512

    [20]

    Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M H, Qian B, Vehstedt E K, Yang J H, Pham H M, Spinu L, Mao Z Q 2009 Phys. Rev. Lett. 102 247001

    [21]

    Wang Q Yan, Li Z, Zhang W H, Zang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [22]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [23]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Hilbert von Löhneysen H V, Shibauchi T, Matsuda Y 2014 PNAS 111 16309

    [24]

    Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J Prokeš K Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Y. Qiu Y Thampy V, Savici A T, Rodriguez J A Broholm C 2010 Nature Mater 9 716

    [25]

    Hanaguri T, Niitaka S Kuroki K Takagi H 2010 Science 328 474

    [26]

    Lin W Z Li Q, Sales B C Jesse S Sefat A S Kalinin S V, Pan M H 2013 ACS Nano 7 2634

    [27]

    Wen J S, Xu G Y, Xu Z J, Lin Z W, Li Q, Chen Y, Chi S X, Gu G D, Tranquada J M2010 Phys. Rev. B 81 100513(R)

    [28]

    Wang Z Y 2014 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [王震宇 2014 博士学位论文(北京: 中科院物理研究所)]

    [29]

    Sun Y, Tsuchiya Y, Taen T, Yamada T, Pyon S, Sugimoto A, Ekino T, Shi Z X, Tamegai T 2014 Sci. Rep. 4 4585

    [30]

    Yang H, Wang Z Y, Fang D L, Li S, Kariyado T, Chen G F, Ogata M, Das T, Balatsky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [31]

    Zhou X D, Cai P, Wang A F, Ruan W, Ye C, Chen X H, You Y Z, Weng Z Y, Wang Y Y 2012 Phys. Rev. Lett. 109 037002

    [32]

    Wang Z Y, Fang D L, Deng Q, Yang H, Ren C, Wen H H 2014 Phys. Rev. B 89 214515

    [33]

    Wang Z Y, Yang H, Fang D L, Shen B, Wang Q H, Shan L, Zhang C L, Dai P C, Wen H H 2013 Nature Phys. 9 42

  • [1] Li Geng, Ding Hong, Wang Zi-Qiang, Gao Hong-Jun. Majorana zero mode and its lattice construction in iron-based superconductors. Acta Physica Sinica, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [2] Wen Hai-Hu. Brief introduction to flux pinning and vortex dynamics in high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] Hu Jiang-Ping. Searching for new unconventional high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [4] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [5] Kong Ling-Yuan, Ding Hong. Emergent vortex Majorana zero mode in iron-based superconductors. Acta Physica Sinica, 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [6] Jin Shi-Feng, Guo Jian-Gang, Wang Gang, Chen Xiao-Long. Research progress on FeSe-based superconducting materials. Acta Physica Sinica, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [7] Mu Gang, Ma Yong-Hui. Single crystal growth and physical property study of 1111-type Fe-based superconducting system CaFeAsF. Acta Physica Sinica, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [8] Li Shi-Liang, Liu Zhao-Yu, Gu Yan-Hong. Nematic fluctuations in iron-based superconductors studied by resistivity change under uniaxial pressure. Acta Physica Sinica, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [9] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] Wang Zhi-Cheng, Cao Guang-Han. Self-doped iron-based superconductors with intergrowth structures. Acta Physica Sinica, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [11] Wang Nai-Zhou, Shi Meng-Zhu, Lei Bin, Chen Xian-Hui. Exploration and physical investigation of FeSe-based superconductors. Acta Physica Sinica, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [12] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [13] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [14] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [15] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [16] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [17] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [18] Zhao Jing-Long, Dong Zheng-Chao, Zhong Chong-Gui, Li Cheng-Di. Tunneling spectra for quantum wire/iron-based superconductor junction. Acta Physica Sinica, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [19] Xing Zhong-Wen, Liu Mei, Li Bin. Magnetism and phonon softening of LiFeAs superconductors. Acta Physica Sinica, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [20] Liu Su, Li Bin, Wang Wei, Wang Jun, Liu Mei. Electronic structure and magnetism of SrFeAsF and Co-doped superconductor SrFe0.875Co0.125AsF. Acta Physica Sinica, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
Metrics
  • Abstract views:  7932
  • PDF Downloads:  362
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2015
  • Accepted Date:  19 March 2015
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map