-
里德伯态光谱是测量里德伯态能级结构和中性原子间相互作用的常用技术手段,特别是高精度的里德伯光谱,可以测量室温原子气室中由偶极相互作用等导致的原子能级频移.在实验中利用反向的852 nm激光和509 nm激光实现了室温原子气室中铯原子6S1/26P3/257S (D)跃迁的级联双光子激发,实现了里德伯态原子的制备.基于阶梯型电磁诱导透明获得了铯原子里德伯态的高分辨光谱.实验中,基于速度选择的射频边带调制技术,对光谱信号进行了频率标定,测量了铯原子里德伯态57D3/2和57D5/2的精细分裂,分裂间隔为(354.72.5) MHz,与理论计算结果基本一致.速度选择的射频调制光谱可以实现里德伯态原子的能级分裂测量,其测量精度对于单光子跃迁的绝对激光频率不敏感;实验中影响57D3/2和57D5/2精细分裂间隔测量精度的主要因素是功率加宽导致的电磁感应透明信号的展宽和509 nm激光频率扫描的非线性.The spectra of Rydberg atoms are of great significance for studying the energy levels of Rydberg atoms and the interaction between neutral atoms, especially, the high-precision spectra of Rydberg atoms can be used to measure the energy level shifts of Rydberg atoms resulting from the dipole-dipole interactions in room-temperature vapor cells. In this paper we report the preparation of cesium Rydberg states based on the cascaded two-photon excitation of 509 nm laser and 852 nm laser in opposite, and the measurements of the fine structure of cesium Rydberg states. In this experiment, the 509 nm laser is generated by the cavity-enhanced second-harmonic generation from 1018 nm laser with a periodically-poled KTP crystal and has a maximum power of about 1 W, and the 852 nm probe laser is provided by an external-cavity diode laser with a maximum output power of 5 mW and a typical linewidth of 1 MHz. By scanning the frequency of 509 nm coupling laser, it is presented that the Doppler-free spectra based on electromagnetically-induced transparency (EIT) of 509 nm coupling laser and 852 nm probe laser. The velocity-selective EIT spectra are used to study the spectral splitting of 6S1/26P3/257S(D) ladder-type system of cesium Rydberg atoms in a room-temperature vapor cell. The powers of 852 nm probe laser and 509 nm coupling laser are 0.3 upW and 200 mW, respectively. Their waist radii are both approximately 50 m. The intervals of hyperfine splitting of the intermediate state 6P3/2(F'=3, 4, 5) and fine splitting of 57D3/2 and 57D5/2 Rydberg states are measured by a frequency calibrating. Concretely, the velocity-selective spectrum with a radio frequency (RF) modulation of 30 MHz is used as a reference to calibrate the Rydberg fine-structure states in the hot vapor cell, where the RF frequency precision is smaller than a hertz on long time scales and the EIT linewidth is smaller than 13 MHz. The experimental value of the fine structure splitting of 57D3/2 and 57D5/2 Rydberg states is (354.72.5) MHz, that is in consistence with the value of 346.8 MHz calculated by Rydberg-Ritz equation and quantum defects of 57D3/2 and 57D5/2 Rydberg states. The experimental values of hyperfine splitting of intermediate state 6P3/2(F'=3, 4, 5) are also coincident with the theoretical calculated values. The dominant discrepancy existing between the experimental and calculated results may arise from the nonlinear correspondence of the PZT while the 509 nm wavelength cavity is scanned, and the measurement accuracy influenced by the spectral linewidth. The velocity-selective spectroscopy technique can also be used to measure the energy level shifts caused by the interactions of Rydberg atoms.
-
Keywords:
- Rydberg state /
- electromagnetically induced transparency /
- fine structure /
- hyperfine structure
[1] Gallagher T F 1994 Rydberg Atoms (Cambridge:Cambridge University Press) p1
[2] Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819
[3] Bason M G, Tanasittikosol M T, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015
[4] Barredo D, Kubler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002
[5] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017
[6] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832
[7] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603
[8] Dudin Y O, Kuzmich A 2012 Science 336 887
[9] Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001
[10] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57
[11] Saffman M, Walker T G, Mlmer K 2010 Rev. Mod. Phys. 82 2313
[12] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[13] Dudin Y O, Kuzmich A 2012 Science 336 887
[14] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 6
[15] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[16] Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858
[17] Harris S E 1989 Phys. Rev. Lett. 62 1033
[18] Li Y Q, Xiao M 1995 Phys. Rev. A 51 4959
[19] Fano U 1961 Phys. Rev. 124 1866
[20] Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821
[21] Kbler H, Shaffer J P, Baluktsian T, Lw R, Pfau T 2010 Nature Photon. 4 112
[22] Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kbler H, Lw R, Pfau T 2011 Phys. Rev. Lett. 107 243001
[23] Xu W, DeMarco B 2016 Phys. Rev. A 93 011801
[24] Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A 94 043822
[25] Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017 Appl. Opt. 56 55
[26] Black E D 2001 Am. J. Phys. 69 79
[27] Weber K H, Sansonetti C J 1987 Phys. Rev. A 35 4650
[28] Goy P, Raimond J M, Vitrant G, Haroche S 1982 Phys. Rev. A 26 2733
-
[1] Gallagher T F 1994 Rydberg Atoms (Cambridge:Cambridge University Press) p1
[2] Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819
[3] Bason M G, Tanasittikosol M T, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015
[4] Barredo D, Kubler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002
[5] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017
[6] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832
[7] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603
[8] Dudin Y O, Kuzmich A 2012 Science 336 887
[9] Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001
[10] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57
[11] Saffman M, Walker T G, Mlmer K 2010 Rev. Mod. Phys. 82 2313
[12] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[13] Dudin Y O, Kuzmich A 2012 Science 336 887
[14] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 6
[15] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[16] Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858
[17] Harris S E 1989 Phys. Rev. Lett. 62 1033
[18] Li Y Q, Xiao M 1995 Phys. Rev. A 51 4959
[19] Fano U 1961 Phys. Rev. 124 1866
[20] Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821
[21] Kbler H, Shaffer J P, Baluktsian T, Lw R, Pfau T 2010 Nature Photon. 4 112
[22] Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kbler H, Lw R, Pfau T 2011 Phys. Rev. Lett. 107 243001
[23] Xu W, DeMarco B 2016 Phys. Rev. A 93 011801
[24] Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A 94 043822
[25] Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017 Appl. Opt. 56 55
[26] Black E D 2001 Am. J. Phys. 69 79
[27] Weber K H, Sansonetti C J 1987 Phys. Rev. A 35 4650
[28] Goy P, Raimond J M, Vitrant G, Haroche S 1982 Phys. Rev. A 26 2733
计量
- 文章访问数: 8396
- PDF下载量: 370
- 被引次数: 0