-
作为超快强激光场与原子分子相互作用的基本过程之一, 里德伯态激发被认为是强场隧穿电离诱导的物理过程的一个重要补充, 受到了研究者的广泛关注. 过去几十年来, 不断涌现了出色的理论和实验工作, 对超快强激光场下里德伯态激发的物理机制形成了更加深入的理解和更为系统的全新认识, 使得该研究课题逐步发展成为强场原子分子物理领域的一个重要研究方向. 本文系统地综述了超快强激光场中原子分子的里德伯态激发的研究进展, 着重介绍近年来在原子强场里德伯态激发的物理机制、分子强场里德伯态激发中的结构效应以及基于强场里德伯态激发的中性粒子加速和相干辐射研究等方面的研究工作, 在此基础上, 总结和展望了强场激发研究方向未来的发展趋势. 希望本文能够为强场激发相关研究提供较为详尽的文献综述, 为进一步开展深入的研究工作提供参考.When atoms or molecules are irradiated by a strong laser field with pulse duration of tens of femtoseconds and intensity larger than 1013 W/cm2, they will generally undergo tunneling ionization, which will induce various non-perturbative and highly nonlinear phenomena. Investigations into the strong field physical processes is of significance in studying attosecond physics, molecular orbital imaging, ultrafast electron diffraction and advanced short ultraviolet light sources. While there is a relatively long history of the studies of tunneling ionization induced physics including high-order above threshold ionization (HATI), high-order harmonic generation (HHG) and non-sequential double ionization (NSDI), it is until recently to surprisedly find that in the tunneling ionization region, neutral atoms or molecules can survive in strong laser fields in highly excited Rydberg states. As a basic process of the interaction between ultrafast strong laser fields and atoms or molecules, such a Rydberg state excitation (RSE) has been viewed as an important supplement to the physical picture of the tunneling ionization. During the past several years, the extensive research attention has been paid to the RSE process in strong laser field. Various theoretical and experimental methods have been developed to investigate the strong field RSE of both atoms and molecules, to understand the underlying physical mechanism behind the recapture of the tunneling electrons and to reveal the quantum features and molecular structure effect in RSE. These advances have brought about an in-depth understanding and a systematic view of the atomic and molecular RSE in strong laser fields, as well as their relations to the other tunneling ionization induced physical processes such as ATI, HHG and NSDI. Here, we systematically review recent research progress of the atomic and molecular RSE in strong laser fields. We particularly focus on several aspects of this strong field process, i.e. the physical mechanism of the recapture, the quantum feature and the interference of different orbits, and the structure effect in molecular RSE. In addition, neutral particle acceleration and coherent radiation which can be induced by the strong field RSE, are also discussed. Finally, we provide a short summary and prospect of the future studies on the strong field RSE.
[1] Strickland D 2019 Rev. Mod. Phys. 91 030502Google Scholar
[2] Mourou G 2019 Rev. Mod. Phys. 91 030501Google Scholar
[3] Keldysh L V 1965 Sov. Phys. JETP 5 1307
[4] Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar
[5] Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar
[6] Corkum P B 2011 Phys. Today 64 36
[7] Tisch J W G 2008 Nat. Phys. 4 350Google Scholar
[8] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar
[9] Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar
[10] Levesque J, Itatani J, Zeidler D, Pépin H, Kieffer J-C, Corkum P B, Villeneuve D M 2006 J. Mod. Opt. 53 185Google Scholar
[11] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R, Salières P 2010 Nat. Phys. 6 200Google Scholar
[12] Morales F, Richter M, Patchkovskii S, Smirnova O 2011 Proc. Natl. Acad. Sci. U. S. A. 108 16906Google Scholar
[13] Lein M, Marangos J P, Knight P L 2002 Phys. Rev. A 66 051404(R)
[14] Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M, Corkum P B 2008 Science 320 1478Google Scholar
[15] Gertsvolf M, Jean-Ruel H, Rajeev P P, Klug D D, Rayner D M, Corkum P B 2008 Phys. Rev. Lett. 101 243001Google Scholar
[16] Park I Y, Kim S, Choi J, Lee D H, Kim Y J, Kling M F, Stockman M I, Kim S W 2011 Nat. Photonics 5 677Google Scholar
[17] Gauthier D, Ribic P R, De Ninno G, Allaria E, Cinquegrana P, Danailov M B, Demidovich A, Ferrari E, Giannessi L, Mahieu B, Penco G 2015 Phys. Rev. Lett. 115 114801Google Scholar
[18] Gauthier D, Allaria E, Coreno M, et al. 2016 Nat. Commun. 7 13688Google Scholar
[19] Wang B B, Li X F, Fu P M, Chen J, Liu J 2006 Chin. Phys. Lett. 23 2729Google Scholar
[20] Nubbemeyer T, Gorling K, Saenz A, Eichmann U, Sandner W 2008 Phys. Rev. Lett. 101 233001Google Scholar
[21] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰 2016 65 223201Google Scholar
Zhao L, Zhang Q, Dong J W, Lü H, Xu H F 2016 Acta Phys. Sin. 65 223201Google Scholar
[22] Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009 Phys. Rev. Lett. 102 113002Google Scholar
[23] Nubbemeyer T, Eichmann U, Sandner W 2009 J. Phys. B:At. Mol. Opt. Phys. 42 134010Google Scholar
[24] McKenna J, Zeng S, Hua J J, Sayler A M, Zohrabi M, Johnson N G, Gaire B, Carnes K D, Esry B D, Ben-Itzhak I 2011 Phys. Rev. A 84 043425Google Scholar
[25] Lv H, Zhang J F, Zuo W L, Jin M X, Xu H F, Ding D J 2014 J. Phys. Conf. Ser. 488 032036Google Scholar
[26] Lv H, Zuo W L, Zhao L, Xu H F, Jin M X, Ding D J, Hu S L, Chen J 2016 Phys. Rev. A 93 033415Google Scholar
[27] Sun F H, Lu C X, Ma Y Z, Pan S Z, Wang J W, Zhang W B, Qiang J J, Chen F, Ni H C, Li H, Wu J 2021 Opt. Express 29 31240Google Scholar
[28] Wu J, Vredenborg A, Ulrich B, Schmidt L P, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Dömer R 2011 Phys. Rev. Lett. 107 043003Google Scholar
[29] Zimmermann H, Buller J, Eilzer S, Eichmann U 2015 Phys. Rev. Lett. 114 123003Google Scholar
[30] Xu S P, Liu M Q, Hu S L, Shu Z, Quan W, Xiao Z L, Zhou Y, Wei M Z, Zhao M, Sun R P, Wang Y L, Hua L Q, Gong C, Lai X Y, Chen J, Liu X J 2020 Phys. Rev. A 102 043104Google Scholar
[31] Zhao L, Dong J W, Lv H, Yang T X, Lian Y, Jin M X, Xu H F, Ding D J, Hu S L, Chen J 2016 Phys. Rev. A 94 053403Google Scholar
[32] Larimian S, Erattupuzha S, Lemell C, Yoshida S, Nagele S, Maurer R, Baltuška A, Burgdörfer J, Kitzler M, Xie X H 2016 Phys. Rev. A 94 033401Google Scholar
[33] Yun H, Mun J H, Hwang S I, Park S B, Ivanov I A, Nam C H, Kim K T 2018 Nat. Photonics 12 62Google Scholar
[34] Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2009 Laser Phys. 19 1550Google Scholar
[35] Landsman A S, Pfeiffer A N, Hofmann C, Smolarski M, Cirelli C, Keller U 2013 New J. Phys. 15 013001Google Scholar
[36] Lin Y W, Williams S, Odom B C 2013 Phys. Rev. A 87 011402Google Scholar
[37] Huang K Y, Xia Q Z, Fu L B 2013 Phys. Rev. A 87 033415Google Scholar
[38] Shomsky K N, Smith Z S, Haan S L 2009 Phys. Rev. A 79 061402(R)
[39] Xia Q Z, Fu L B, Liu J 2013 Phys. Rev. A 87 033404Google Scholar
[40] Volkova E A, Popov A M, Tikhonova O V 2011 J. Exp. Theor. Phys. 113 394Google Scholar
[41] Li Q G, Tong X-M, Morishita T, Wei H, Lin C D 2014 Phys. Rev. A 89 023421Google Scholar
[42] Zimmermann H, Patchkovskii S, Ivanov M, Eichmann U 2017 Phys. Rev. Lett. 118 013003Google Scholar
[43] Hu S L, Hao X L, Lv H, Liu M Q, Yang T Q, Xu H F, Jin M X, Ding D J, Li Q G, Li W D, Becker W, Chen J 2019 Opt. Express 27 31629Google Scholar
[44] Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, DiMauro L F 2009 Nat. Phys. 5 335Google Scholar
[45] Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001Google Scholar
[46] Dura J, Camus N, Thai A, Britz A, Hemmer M, Baudisch M, Senftleben A, Schroter C D, Ullrich J, Moshammer R, Biegert J 2013 Sci. Rep. 3 2675Google Scholar
[47] Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I, Chang Z H 2014 Nat. Photonics 8 437Google Scholar
[48] Xiong W H, Peng L Y, Gong Q H 2017 J. Phys. B:At. Mol. Opt. Phys. 50 032001Google Scholar
[49] Eichmann U, Nubbemeyer T, Rottke H, Sandner W 2009 Nature 461 1261Google Scholar
[50] Bredtmann T, Patchkovskii S, Ivanov M Y 2017 New J. Phys. 19 073011Google Scholar
[51] Bogatskaya A V, Volkova E A, Popov A M 2016 Laser Phys. 26 015301Google Scholar
[52] Lin C D, Le A T, Chen Z J, Morishita T, Lucchese R 2010 J. Phys. B: At. Mol. Opt. Phys. 43 122001Google Scholar
[53] Becker W, Grasbon E, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35
[54] Becker W, Goreslavski S P, Milošević D B, Paulus G G 2018 J. Phys. B:At. Mol. Opt. Phys. 51 162002Google Scholar
[55] Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar
[56] Zhou Y M, Lu P X 2016 Sci. Sin. -Phys. Mech. Astron. 47 033005
[57] Lein M 2007 J. Phys. B:At. Mol. Opt. Phys. 40 R135Google Scholar
[58] Anstöter C S, Bull J N, Verlet J R R 2016 Int. Rev. Phys. Chem. 35 509Google Scholar
[59] Nisoli M, Sansone G 2009 Prog. Quantum Electron. 33 17Google Scholar
[60] Landsman A S, Keller U 2015 Phys. Rep. 547 1Google Scholar
[61] Zimmermann H, Eichmann U 2016 Phys. Scr. 91 104002Google Scholar
[62] Gallagher T F 1988 Rep. Prog. Phys. 51 143Google Scholar
[63] Softley T P 2007 Int. Rev. Phys. Chem. 23 1
[64] Larimian S, Lemell C, Stummer V, Geng J W, Roither S, Kartashov D, Zhang L, Wang M X, Gong Q H, Peng L Y, Yoshida S, Burgdörfer J, Baltuška A, Kitzler M, Xie X H 2017 Phys. Rev. A 96 021403(R)
[65] Larimian S, Erattupuzha S, Baltuška A, Kitzler-Zeiler M, Xie X H 2020 Phys. Rev. Res. 2 013021Google Scholar
[66] Zhao M, Wang Y L, Quan W, Lai X Y, Liu H P, Lu J D, Liu X J 2021 Phys. Rev. A 104 043115Google Scholar
[67] Zhang W B, Yu Z Q, Gong X C, Wang J P, Lu P F, Li H, Song Q Y, Ji Q Y, Lin K, Ma J Y, Li H X, Sun F H, Qiang J J, Zeng H P, He F, Wu J 2017 Phys. Rev. Lett. 119 253202Google Scholar
[68] Zhang W B, Li H, Gong X C, Lu P F, Song Q Y, Ji Q Y, Lin K, Ma J Y, Li H X, Sun F H, Qiang J J, Zeng H P, Wu J 2018 Phys. Rev. A 98 013419Google Scholar
[69] Sun F H, Zhang W B, Lu P F, Song Q Y, Lin K, Ji Q Y, Ma J Y, Li H X, Qiang J J, Gong X C, Li H, Wu J 2019 J. Phys. B: At. Mol. Opt. Phys. 53 035601
[70] Ma J Y, Li H, Lin K, Ji Q Y, Zhang W B, Li H X, Sun F H, Qiang J J, Lu P F, Gong X C, Wu J 2019 Phys. Rev. A 99 023414Google Scholar
[71] Ma J Y, Zhang W B, Lin K, Ji Q Y, Li H X, Sun F H, Qiang J J, Chen F, Tong J H, Lu P F, Li H, Gong X C, Wu J 2019 Phys. Rev. A 100 063413Google Scholar
[72] Zhang W B, Gong X C, Li H, Lu P F, Sun F H, Ji Q Y, Lin K, Ma J Y, Li H X, Qiang J J, He F, Wu J 2019 Nat. Commun. 10 757Google Scholar
[73] Zhang W B, Lu P F, Gong X C, Li H, Ji Q Y, Lin K, Ma J Y, Li H X, Sun F H, Qiang J J, Chen F, Tong J H, Wu J 2020 Phys. Rev. A 101 033401Google Scholar
[74] Ammoso M V, Delone N B, Kraino V P 1986 Eksp. Teor. Fiz. 91 2008
[75] Piraux B, Mota-Furtado F, O'Mahony P F, Galstyan A, Popov Y V 2017 Phys. Rev. A 96 043403Google Scholar
[76] Chen Z J, Morishita T, Le A T, Wickenhauser M, Tong X M, Lin C D 2006 Phys. Rev. A 74 053405Google Scholar
[77] Li Q G, Tong X M, Morishita T, Jin C, Wei H, Lin C D 2014 J. Phys. B:At. Mol. Opt. Phys. 47 204019Google Scholar
[78] Chetty D, Glover R D, deHarak B A, Tong X M, Xu H, Pauly T, Smith N, Hamilton K R, Bartschat K, Ziegel J P, Douguet N, Luiten A N, Light P S, Litvinyuk I V, Sang R T 2020 Phys. Rev. A 101 053402Google Scholar
[79] Liu M Q, Xu S P, Hu S L, Becker W, Quan W, Liu X J, Chen J 2021 Optica 8 765Google Scholar
[80] Eichmann U, Saenz A, Eilzer S, Nubbemeyer T, Sandner W 2013 Phys. Rev. Lett. 110 203002Google Scholar
[81] Venzke J, Reiff R, Xue Z, Jaroń-Becker A, Becker A 2018 Phys. Rev. A 98 043434Google Scholar
[82] Xie X, Wu C, Liu H, Li M, Deng Y K, Liu Y Q, Gong Q H, Wu C Y 2013 Phys. Rev. A 88 065401Google Scholar
[83] Emmanouilidou A, Lazarou C, Staudte A, Eichmann U 2012 Phys. Rev. A 85 011402(R)
[84] Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar
[85] Santra R, Gordon A 2006 Phys. Rev. Lett. 96 073906Google Scholar
[86] Pavičić D, Lee K F, Rayner D M, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 243001Google Scholar
[87] Doumy G, DiMauro L F 2008 Science 322 1194Google Scholar
[88] Busuladžić M, Hasović E, Becker W, Milošević D B 2012 J. Chem. Phys. 137 134307Google Scholar
[89] Lin Z Y, Jia X Y, Wang C L, Hu Z L, Kang H P, Quan W, Lai X Y, Liu X J, Chen J, Zeng B, Chu W, Yao J P, Cheng Y, Xu Z Z 2012 Phys. Rev. Lett. 108 223001Google Scholar
[90] Yao J P, Li G H, Jia X Y, Hao X L, Zeng B, Jing C R, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Zhao Z X, Chen J, Liu X J, Cheng Y, Xu Z Z 2013 Phys. Rev. Lett. 111 133001Google Scholar
[91] 王品懿, 贾欣燕, 樊代和, 陈京 2015 64 143201Google Scholar
Wang P Y, Jia X Y, Fan D H, Chen J 2015 Acta Phys. Sin. 64 143201Google Scholar
[92] Monfared M, Irani E, Sadighi-Bonabi R 2018 J. Chem. Phys. 148 234303Google Scholar
[93] Shu Z, Liu M, Hu S L, Chen J 2020 Opt. Express 28 11165Google Scholar
[94] Liu M Q, Shu Z, Hu S L, Chen J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 095601Google Scholar
[95] Maher-McWilliams C, Douglas P, Barker P F 2012 Nat. Photonics 6 386Google Scholar
[96] Cai X M, Zheng J, Lin Q 2013 Phys. Rev. A 87 043401Google Scholar
[97] Eilzer S, Eichmann U 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204014Google Scholar
[98] Wang P X, Wei Q, Cai P, Wang J X, Ho Y K 2016 Opt. Lett. 41 230Google Scholar
[99] Chen J H, Wang J F, Li X F, Yuan X Q, Wang P X 2017 J. Appl. Phys. 121 103105Google Scholar
[100] Matthews M, Morales F, Patas A, Lindinger A, Gateau J, Berti N, Hermelin S, Kasparian J, Richter M, Bredtmann T, Smirnova O, Wolf J P, Ivanov M 2018 Nat. Phys. 14 695Google Scholar
[101] Mun J H, Ivanov I A, Yun H, Kim K T 2018 Phys. Rev. A 98 063429Google Scholar
[102] Ortmann L, Hofmann C, Ivanov I A, Landsman A S 2021 Phys. Rev. A 103 063112Google Scholar
[103] Ge P P, Liu Y Q 2017 J. Phys. B: At. Mol. Opt. Phys. 50 125001Google Scholar
[104] Chen A, Kling M F, Emmanouilidou A 2017 Phys. Rev. A 96 033404Google Scholar
[105] Vilà A, Katsoulis G P, Emmanouilidou A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 015604Google Scholar
[106] Xu T T, Gong W J, Zhang L L, Qi Y 2020 Opt. Express 28 35168Google Scholar
[107] Katsoulis G P, Sarkar R, Emmanouilidou A 2020 Phys. Rev. A 101 033403Google Scholar
[108] Cao C P, Li M, Liang J T, Guo K Y, Zhou Y M, Lu P X 2021 J. Phys. B:At. Mol. Opt. Phys. 54 035601Google Scholar
[109] Li Y B, Xu J K, Chen H M, Li Y H, He J J, Qin L L, Shi L k, Zhao Y G, Tang Q B, Zhai C Y, Yu B H 2021 Opt. Commun. 493 127019Google Scholar
-
图 3 (a) 800 nm飞秒强激光场中电离 (He+, 黑色方框)和RSE (He*, 红色圆圈)产率随激光椭偏率的变化关系[20]; (b) 强激光场中不同Ip的原子里德伯态产率对激光椭偏率依赖的半高全宽(σχ)和相位窗口的宽度与横向速度的比值 (
$\Delta /{\upsilon _{\text{d}}}$ , 绿色星形)[37]; (c) 800 nm飞秒强激光场Kr原子RSE (Kr*, 黑色方框)及NSDI (Kr2+, 蓝色菱形)产率随激光椭偏率的变化关系. 红色圆圈为三维半经典计算结果, 蓝色实线为忽略库仑势的SFA模型计算结果[31]Fig. 3. (a) Dependence of ionization (He+, black squares) and RSE (He*, red circles) yields on the ellipticity of the 800 nm strong laser fields [20]; (b) dependence of Rydberg state yields of atoms with different IP on the ellipticity of strong laser fields (σχ) and the ratio between the width of phase window and the drift velocity vd for different atoms (
$\Delta /{\upsilon _{\text{d}}}$ , green star)[37]; (c) yields of Kr RSE (Kr*, black squares) and NSDI (Kr2+, blue diamonds) on the ellipticity of the strong 800 nm laser fields. Red circles are the results from 3D semiclassical calculations. Blue solid lines are the SFA model analytical results without considering the Coulomb potential[31].图 4 (a) H原子在800 nm激光场下电离率(红色实线)和激发率(蓝色虚线)随激光光强变化的TDSE数值模拟结果[77]; (b), (c) Ar原子在400和800 nm强激光场下实验测量的电离率和激发率随激光光强变化[30]; (d) Ar原子在1800 nm激光场下激发率与电离率比值的测量和计算结果[79]
Fig. 4. (a) Dependence of H ionization (red solid lines) and RSE (blue dotted lines) yields on the intensity of 800 nm strong laser fields based on TDSE numerical simulations [77]; (b), (c) experimentally measured Ar ionization and RSE yields in 400 and 800 nm strong laser fields[30]; (d) measured and calculated yield ratios of Ar ionization and RSE in 1800 nm strong laser fields[79].
图 5 强场RSE的量子图像. 在激光不同半周期内电离的隧穿电子被俘获到特定的里德伯态, 不同轨道的干涉产生随激光强度变化的振荡峰结构[43]
Fig. 5. Quantum picture of strong field RSE process. The tunneling electrons ionized in different optical half cycles of the laser pulse are captured into a certain Rydberg state, and the interference of different orbits leads to the intensity dependence of peak structures[43].
图 6 (a) 800 nm强激光场中He*的主量子数n的布居. 蓝色圆圈和红色方框分别代表1.8×1015 W/cm2和2.9×1015 W/cm2下实验测量结果. 空心菱形和空心方框分别代表1×1015 W/cm2和1.4×1015 W/cm2下半经典理论计算结果. 空心圆圈和空心三角形分别代表1.8×1015 W/cm2和2.9×1015 W/cm2下量子单电子近似理论结果[29]; (b) 上图为不同直流电场下Ar*产率随时间的变化关系, 下图为提取的量子态分布. 黑色方框、红色圆圈和蓝色三角分别表示COLTRIMS中直流电场为1.8, 3.9和5.7 V/cm下的实验测量结果数据和分别在1.8, 3.9和5.7 V/cm处提取的主量子数的布居, 实线曲线是拟合结果以及在800 nm激光场下提取的Ar*的主量子数的布居, 品红色菱形表示半经典模型计算的主量子数的布居结果[66].
Fig. 6. (a) Measured n-distributions in 800 nm strong laser fields for a laser intensity 1.8×1015W/cm2 (blue circles) and 2.9×1015 W/cm2 (red squares). Semiclassical calculations at a laser intensity 1×1015 W/cm2(open diamonds) and 1.4×1015 W/cm2 (open squares), and quantum mechanical SAE calculations at 1.8×1015 W/cm2 (open circles) and 2.9×1015 W/cm2 (open triangles) [29]. (b) upper panel: time dependence of the yields of Ar* at a series of dc electric fields. Lower panel: extracted PQNDs for the data presented in the above figure[66]. The black squares, red circles, and blue triangles indicate the experimental data and the extracted PQND at 1.8, 3.9, and 5.7 V/cm, respectively. The fitting results and the extracted PQNDs of Ar* in 800 nm strong laser fields are depicted by solid curves. The magenta diamonds in the lower panel indicate the calculated PQND by the semiclassical model[66].
图 8 (a) 强激光场中CO分子形成的原子激发态碎片产率依赖于激光场方向和分子取向[73]; (b) Ar2二聚体高阶库仑爆炸通道的平动能分布[28]
Fig. 8. (a) The yields of atomic excited fragments formed by CO molecules in strong laser fields depend on the direction of laser field and molecular orientation [73]; (b) kinetic energy release distribution of multiple ionization-induced Coulomb explosion channels of the Ar dimer[28].
图 10 在线偏光下O2/Xe (光强为8×1013 W/cm2)和N2/Ar (光强为1.2×1014 W/cm2)的光电子-光离子符合光谱. 红色虚线表示由于原子分子激发态的黑体辐射导致光电离和直流电场电离之间的分界线[27]
Fig. 10. Photoelectron-photoion-coincidence spectra obtained in linearly polarized femtosecond laser pulses for O2/Xe (at the intensity of 8×1013 W/cm2) and for N2/Ar (at the intensity of 1.2×1014 W/cm2). The red dashed curves in both figures indicate the separation between DC electric field ionization and photon ionization due to black body radiation of the Rydberg atoms and molecules[27].
-
[1] Strickland D 2019 Rev. Mod. Phys. 91 030502Google Scholar
[2] Mourou G 2019 Rev. Mod. Phys. 91 030501Google Scholar
[3] Keldysh L V 1965 Sov. Phys. JETP 5 1307
[4] Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar
[5] Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar
[6] Corkum P B 2011 Phys. Today 64 36
[7] Tisch J W G 2008 Nat. Phys. 4 350Google Scholar
[8] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar
[9] Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar
[10] Levesque J, Itatani J, Zeidler D, Pépin H, Kieffer J-C, Corkum P B, Villeneuve D M 2006 J. Mod. Opt. 53 185Google Scholar
[11] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R, Salières P 2010 Nat. Phys. 6 200Google Scholar
[12] Morales F, Richter M, Patchkovskii S, Smirnova O 2011 Proc. Natl. Acad. Sci. U. S. A. 108 16906Google Scholar
[13] Lein M, Marangos J P, Knight P L 2002 Phys. Rev. A 66 051404(R)
[14] Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M, Corkum P B 2008 Science 320 1478Google Scholar
[15] Gertsvolf M, Jean-Ruel H, Rajeev P P, Klug D D, Rayner D M, Corkum P B 2008 Phys. Rev. Lett. 101 243001Google Scholar
[16] Park I Y, Kim S, Choi J, Lee D H, Kim Y J, Kling M F, Stockman M I, Kim S W 2011 Nat. Photonics 5 677Google Scholar
[17] Gauthier D, Ribic P R, De Ninno G, Allaria E, Cinquegrana P, Danailov M B, Demidovich A, Ferrari E, Giannessi L, Mahieu B, Penco G 2015 Phys. Rev. Lett. 115 114801Google Scholar
[18] Gauthier D, Allaria E, Coreno M, et al. 2016 Nat. Commun. 7 13688Google Scholar
[19] Wang B B, Li X F, Fu P M, Chen J, Liu J 2006 Chin. Phys. Lett. 23 2729Google Scholar
[20] Nubbemeyer T, Gorling K, Saenz A, Eichmann U, Sandner W 2008 Phys. Rev. Lett. 101 233001Google Scholar
[21] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰 2016 65 223201Google Scholar
Zhao L, Zhang Q, Dong J W, Lü H, Xu H F 2016 Acta Phys. Sin. 65 223201Google Scholar
[22] Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009 Phys. Rev. Lett. 102 113002Google Scholar
[23] Nubbemeyer T, Eichmann U, Sandner W 2009 J. Phys. B:At. Mol. Opt. Phys. 42 134010Google Scholar
[24] McKenna J, Zeng S, Hua J J, Sayler A M, Zohrabi M, Johnson N G, Gaire B, Carnes K D, Esry B D, Ben-Itzhak I 2011 Phys. Rev. A 84 043425Google Scholar
[25] Lv H, Zhang J F, Zuo W L, Jin M X, Xu H F, Ding D J 2014 J. Phys. Conf. Ser. 488 032036Google Scholar
[26] Lv H, Zuo W L, Zhao L, Xu H F, Jin M X, Ding D J, Hu S L, Chen J 2016 Phys. Rev. A 93 033415Google Scholar
[27] Sun F H, Lu C X, Ma Y Z, Pan S Z, Wang J W, Zhang W B, Qiang J J, Chen F, Ni H C, Li H, Wu J 2021 Opt. Express 29 31240Google Scholar
[28] Wu J, Vredenborg A, Ulrich B, Schmidt L P, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Dömer R 2011 Phys. Rev. Lett. 107 043003Google Scholar
[29] Zimmermann H, Buller J, Eilzer S, Eichmann U 2015 Phys. Rev. Lett. 114 123003Google Scholar
[30] Xu S P, Liu M Q, Hu S L, Shu Z, Quan W, Xiao Z L, Zhou Y, Wei M Z, Zhao M, Sun R P, Wang Y L, Hua L Q, Gong C, Lai X Y, Chen J, Liu X J 2020 Phys. Rev. A 102 043104Google Scholar
[31] Zhao L, Dong J W, Lv H, Yang T X, Lian Y, Jin M X, Xu H F, Ding D J, Hu S L, Chen J 2016 Phys. Rev. A 94 053403Google Scholar
[32] Larimian S, Erattupuzha S, Lemell C, Yoshida S, Nagele S, Maurer R, Baltuška A, Burgdörfer J, Kitzler M, Xie X H 2016 Phys. Rev. A 94 033401Google Scholar
[33] Yun H, Mun J H, Hwang S I, Park S B, Ivanov I A, Nam C H, Kim K T 2018 Nat. Photonics 12 62Google Scholar
[34] Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2009 Laser Phys. 19 1550Google Scholar
[35] Landsman A S, Pfeiffer A N, Hofmann C, Smolarski M, Cirelli C, Keller U 2013 New J. Phys. 15 013001Google Scholar
[36] Lin Y W, Williams S, Odom B C 2013 Phys. Rev. A 87 011402Google Scholar
[37] Huang K Y, Xia Q Z, Fu L B 2013 Phys. Rev. A 87 033415Google Scholar
[38] Shomsky K N, Smith Z S, Haan S L 2009 Phys. Rev. A 79 061402(R)
[39] Xia Q Z, Fu L B, Liu J 2013 Phys. Rev. A 87 033404Google Scholar
[40] Volkova E A, Popov A M, Tikhonova O V 2011 J. Exp. Theor. Phys. 113 394Google Scholar
[41] Li Q G, Tong X-M, Morishita T, Wei H, Lin C D 2014 Phys. Rev. A 89 023421Google Scholar
[42] Zimmermann H, Patchkovskii S, Ivanov M, Eichmann U 2017 Phys. Rev. Lett. 118 013003Google Scholar
[43] Hu S L, Hao X L, Lv H, Liu M Q, Yang T Q, Xu H F, Jin M X, Ding D J, Li Q G, Li W D, Becker W, Chen J 2019 Opt. Express 27 31629Google Scholar
[44] Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, DiMauro L F 2009 Nat. Phys. 5 335Google Scholar
[45] Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001Google Scholar
[46] Dura J, Camus N, Thai A, Britz A, Hemmer M, Baudisch M, Senftleben A, Schroter C D, Ullrich J, Moshammer R, Biegert J 2013 Sci. Rep. 3 2675Google Scholar
[47] Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I, Chang Z H 2014 Nat. Photonics 8 437Google Scholar
[48] Xiong W H, Peng L Y, Gong Q H 2017 J. Phys. B:At. Mol. Opt. Phys. 50 032001Google Scholar
[49] Eichmann U, Nubbemeyer T, Rottke H, Sandner W 2009 Nature 461 1261Google Scholar
[50] Bredtmann T, Patchkovskii S, Ivanov M Y 2017 New J. Phys. 19 073011Google Scholar
[51] Bogatskaya A V, Volkova E A, Popov A M 2016 Laser Phys. 26 015301Google Scholar
[52] Lin C D, Le A T, Chen Z J, Morishita T, Lucchese R 2010 J. Phys. B: At. Mol. Opt. Phys. 43 122001Google Scholar
[53] Becker W, Grasbon E, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35
[54] Becker W, Goreslavski S P, Milošević D B, Paulus G G 2018 J. Phys. B:At. Mol. Opt. Phys. 51 162002Google Scholar
[55] Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar
[56] Zhou Y M, Lu P X 2016 Sci. Sin. -Phys. Mech. Astron. 47 033005
[57] Lein M 2007 J. Phys. B:At. Mol. Opt. Phys. 40 R135Google Scholar
[58] Anstöter C S, Bull J N, Verlet J R R 2016 Int. Rev. Phys. Chem. 35 509Google Scholar
[59] Nisoli M, Sansone G 2009 Prog. Quantum Electron. 33 17Google Scholar
[60] Landsman A S, Keller U 2015 Phys. Rep. 547 1Google Scholar
[61] Zimmermann H, Eichmann U 2016 Phys. Scr. 91 104002Google Scholar
[62] Gallagher T F 1988 Rep. Prog. Phys. 51 143Google Scholar
[63] Softley T P 2007 Int. Rev. Phys. Chem. 23 1
[64] Larimian S, Lemell C, Stummer V, Geng J W, Roither S, Kartashov D, Zhang L, Wang M X, Gong Q H, Peng L Y, Yoshida S, Burgdörfer J, Baltuška A, Kitzler M, Xie X H 2017 Phys. Rev. A 96 021403(R)
[65] Larimian S, Erattupuzha S, Baltuška A, Kitzler-Zeiler M, Xie X H 2020 Phys. Rev. Res. 2 013021Google Scholar
[66] Zhao M, Wang Y L, Quan W, Lai X Y, Liu H P, Lu J D, Liu X J 2021 Phys. Rev. A 104 043115Google Scholar
[67] Zhang W B, Yu Z Q, Gong X C, Wang J P, Lu P F, Li H, Song Q Y, Ji Q Y, Lin K, Ma J Y, Li H X, Sun F H, Qiang J J, Zeng H P, He F, Wu J 2017 Phys. Rev. Lett. 119 253202Google Scholar
[68] Zhang W B, Li H, Gong X C, Lu P F, Song Q Y, Ji Q Y, Lin K, Ma J Y, Li H X, Sun F H, Qiang J J, Zeng H P, Wu J 2018 Phys. Rev. A 98 013419Google Scholar
[69] Sun F H, Zhang W B, Lu P F, Song Q Y, Lin K, Ji Q Y, Ma J Y, Li H X, Qiang J J, Gong X C, Li H, Wu J 2019 J. Phys. B: At. Mol. Opt. Phys. 53 035601
[70] Ma J Y, Li H, Lin K, Ji Q Y, Zhang W B, Li H X, Sun F H, Qiang J J, Lu P F, Gong X C, Wu J 2019 Phys. Rev. A 99 023414Google Scholar
[71] Ma J Y, Zhang W B, Lin K, Ji Q Y, Li H X, Sun F H, Qiang J J, Chen F, Tong J H, Lu P F, Li H, Gong X C, Wu J 2019 Phys. Rev. A 100 063413Google Scholar
[72] Zhang W B, Gong X C, Li H, Lu P F, Sun F H, Ji Q Y, Lin K, Ma J Y, Li H X, Qiang J J, He F, Wu J 2019 Nat. Commun. 10 757Google Scholar
[73] Zhang W B, Lu P F, Gong X C, Li H, Ji Q Y, Lin K, Ma J Y, Li H X, Sun F H, Qiang J J, Chen F, Tong J H, Wu J 2020 Phys. Rev. A 101 033401Google Scholar
[74] Ammoso M V, Delone N B, Kraino V P 1986 Eksp. Teor. Fiz. 91 2008
[75] Piraux B, Mota-Furtado F, O'Mahony P F, Galstyan A, Popov Y V 2017 Phys. Rev. A 96 043403Google Scholar
[76] Chen Z J, Morishita T, Le A T, Wickenhauser M, Tong X M, Lin C D 2006 Phys. Rev. A 74 053405Google Scholar
[77] Li Q G, Tong X M, Morishita T, Jin C, Wei H, Lin C D 2014 J. Phys. B:At. Mol. Opt. Phys. 47 204019Google Scholar
[78] Chetty D, Glover R D, deHarak B A, Tong X M, Xu H, Pauly T, Smith N, Hamilton K R, Bartschat K, Ziegel J P, Douguet N, Luiten A N, Light P S, Litvinyuk I V, Sang R T 2020 Phys. Rev. A 101 053402Google Scholar
[79] Liu M Q, Xu S P, Hu S L, Becker W, Quan W, Liu X J, Chen J 2021 Optica 8 765Google Scholar
[80] Eichmann U, Saenz A, Eilzer S, Nubbemeyer T, Sandner W 2013 Phys. Rev. Lett. 110 203002Google Scholar
[81] Venzke J, Reiff R, Xue Z, Jaroń-Becker A, Becker A 2018 Phys. Rev. A 98 043434Google Scholar
[82] Xie X, Wu C, Liu H, Li M, Deng Y K, Liu Y Q, Gong Q H, Wu C Y 2013 Phys. Rev. A 88 065401Google Scholar
[83] Emmanouilidou A, Lazarou C, Staudte A, Eichmann U 2012 Phys. Rev. A 85 011402(R)
[84] Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar
[85] Santra R, Gordon A 2006 Phys. Rev. Lett. 96 073906Google Scholar
[86] Pavičić D, Lee K F, Rayner D M, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 243001Google Scholar
[87] Doumy G, DiMauro L F 2008 Science 322 1194Google Scholar
[88] Busuladžić M, Hasović E, Becker W, Milošević D B 2012 J. Chem. Phys. 137 134307Google Scholar
[89] Lin Z Y, Jia X Y, Wang C L, Hu Z L, Kang H P, Quan W, Lai X Y, Liu X J, Chen J, Zeng B, Chu W, Yao J P, Cheng Y, Xu Z Z 2012 Phys. Rev. Lett. 108 223001Google Scholar
[90] Yao J P, Li G H, Jia X Y, Hao X L, Zeng B, Jing C R, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Zhao Z X, Chen J, Liu X J, Cheng Y, Xu Z Z 2013 Phys. Rev. Lett. 111 133001Google Scholar
[91] 王品懿, 贾欣燕, 樊代和, 陈京 2015 64 143201Google Scholar
Wang P Y, Jia X Y, Fan D H, Chen J 2015 Acta Phys. Sin. 64 143201Google Scholar
[92] Monfared M, Irani E, Sadighi-Bonabi R 2018 J. Chem. Phys. 148 234303Google Scholar
[93] Shu Z, Liu M, Hu S L, Chen J 2020 Opt. Express 28 11165Google Scholar
[94] Liu M Q, Shu Z, Hu S L, Chen J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 095601Google Scholar
[95] Maher-McWilliams C, Douglas P, Barker P F 2012 Nat. Photonics 6 386Google Scholar
[96] Cai X M, Zheng J, Lin Q 2013 Phys. Rev. A 87 043401Google Scholar
[97] Eilzer S, Eichmann U 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204014Google Scholar
[98] Wang P X, Wei Q, Cai P, Wang J X, Ho Y K 2016 Opt. Lett. 41 230Google Scholar
[99] Chen J H, Wang J F, Li X F, Yuan X Q, Wang P X 2017 J. Appl. Phys. 121 103105Google Scholar
[100] Matthews M, Morales F, Patas A, Lindinger A, Gateau J, Berti N, Hermelin S, Kasparian J, Richter M, Bredtmann T, Smirnova O, Wolf J P, Ivanov M 2018 Nat. Phys. 14 695Google Scholar
[101] Mun J H, Ivanov I A, Yun H, Kim K T 2018 Phys. Rev. A 98 063429Google Scholar
[102] Ortmann L, Hofmann C, Ivanov I A, Landsman A S 2021 Phys. Rev. A 103 063112Google Scholar
[103] Ge P P, Liu Y Q 2017 J. Phys. B: At. Mol. Opt. Phys. 50 125001Google Scholar
[104] Chen A, Kling M F, Emmanouilidou A 2017 Phys. Rev. A 96 033404Google Scholar
[105] Vilà A, Katsoulis G P, Emmanouilidou A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 015604Google Scholar
[106] Xu T T, Gong W J, Zhang L L, Qi Y 2020 Opt. Express 28 35168Google Scholar
[107] Katsoulis G P, Sarkar R, Emmanouilidou A 2020 Phys. Rev. A 101 033403Google Scholar
[108] Cao C P, Li M, Liang J T, Guo K Y, Zhou Y M, Lu P X 2021 J. Phys. B:At. Mol. Opt. Phys. 54 035601Google Scholar
[109] Li Y B, Xu J K, Chen H M, Li Y H, He J J, Qin L L, Shi L k, Zhao Y G, Tang Q B, Zhai C Y, Yu B H 2021 Opt. Commun. 493 127019Google Scholar
计量
- 文章访问数: 7022
- PDF下载量: 276
- 被引次数: 0