搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于里德伯超级原子快速制备三粒子单重态

计彦强 王洁 刘颖莉 张大伟 肖瑞杰 董莉 修晓明

引用本文:
Citation:

基于里德伯超级原子快速制备三粒子单重态

计彦强, 王洁, 刘颖莉, 张大伟, 肖瑞杰, 董莉, 修晓明

Fast generation of three-atom singlet state with Rydberg superatom

Ji Yan-Qiang, Wang Jie, Liu Ying-Li, Zhang Da-Wei, Xiao Rui-Jie, Dong Li, Xiu Xiao-Ming
PDF
HTML
导出引用
  • 量子纠缠是量子信息处理和量子计算的基本资源, 简单而高效地制备纠缠态始终是学者们研究的热点问题之一. 作为量子信息编码理想载体之一的中性里德伯原子, 以其独特的优势在纠缠态制备领域占有一席之地. 本文将四能级倒“Y”型结构的里德伯原子系综放置于里德伯阻塞球内部使之形成超级原子, 在弱腔场近似下将量子信息编码在超级原子的有效能级上, 结合量子Zeno 动力学和绝热捷径的方法, 简单有效地制备了三粒子单重态. 此外, 本方案考虑了退相干因素(包括腔的衰减和超级原子的自发辐射)对单重态保真度的影响. 数值模拟结果表明, 本方案不需要对系统演化时间进行精确的控制就可以得到很高的保真度, 并且单重态的保真度对退相干因素是比较鲁棒的.
    Quantum entanglement is a basic resource of quantum information processing and quantum computation. The simple and efficient generation of entangled states is always one of the hot research topics. As one of the ideal carriers of quantum information encoding, neutral Rydberg atom occupies a place in the field of generation of entangled state with its unique advantages. For example, Rydberg atom has a large volume and is easily ionized by an external electric field, so it is very sensitive to the change in the external electric field. Therefore, the interaction strength between Rydberg atoms can be changed by altering the external electric field. Rydberg state is a highly excited state, but its radiation attenuation is very small: the radiation lifetime can reach a millisecond level or even longer. The distance between the atomic kernel and the outermost electron is relatively long, and the electric dipole moment is very large. In this paper, the four-level inverted “Y”-type Rydberg atomic system is introduced into the Rydberg blocking ball to form a superatom, and the quantum information is encoded on the effective energy level of the superatom under the condition of weak cavity field. We construct shortcuts to adiabatic passage in a three-superatom system. Combined with quantum Zeno dynamics and shortcuts to adiabatic passage, the three-particle singlet state is simply and effectively generated. In addition, the influence of decoherence factors (including cavity decay and spontaneous emission of superatoms) on the fidelity is considered in this scheme. Numerical simulation results show that the proposed scheme can obtain high fidelity without precisely controlling the evolution time, and the fidelity of singlet state is robust to decoherence factors, since no cavity-photon population is involved in the whole process because of the quantum Zeno dynamics.
      通信作者: 计彦强, jiyanqiang@bhu.edu.cn ; 修晓明, xiuxiaomingdl@126.com
    • 基金项目: 国家自然科学基金(批准号: 11947078, 11674037, 11704042)、辽宁省博士科研启动基金(批准号: 2020-BS-234)和辽宁省兴辽英才计划(批准号: XLYC1807206)资助的课题
      Corresponding author: Ji Yan-Qiang, jiyanqiang@bhu.edu.cn ; Xiu Xiao-Ming, xiuxiaomingdl@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11947078, 11674037, 11704042), the Scientific Research Starting Foundation for Doctors of Liaoning Province, China (Grant No. 2020-BS-234), and the Revitalization Talents Program of Liaoning Province, China (Grant No. XLYC1807206)
    [1]

    Cabello A 2002 Phys. Rev. Lett. 89 100402Google Scholar

    [2]

    Mermin N D 1980 Phys. Rev. D 22 356Google Scholar

    [3]

    Cabello A 2003 J. Mod. Opt. 50 1049Google Scholar

    [4]

    Hsu L Y 2003 Phys. Rev. A 68 022306Google Scholar

    [5]

    Hillery M, Bužek V 2001 Phys. Rev. A 64 042303Google Scholar

    [6]

    Jin G S, Li S S, Feng S L, Zheng H Z 2005 Phys. Rev. A 71 034307Google Scholar

    [7]

    Lin G W, Ye M Y, Chen L B, Du Q H, Lin X M 2007 Phys. Rev. A 76 014308Google Scholar

    [8]

    Shao X Q, Wang H Fu, Chen L, Zhang S, Zhao Y F, Yeon K H 2010 New J. Phys. 12 023040Google Scholar

    [9]

    Lu M, Xia Y, Song J, Song H S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 015502Google Scholar

    [10]

    Shi Z C, Xia Y, Song J, Song H S 2013 Quantum Inf. Process. 12 411Google Scholar

    [11]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R, Lukin M D 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [12]

    Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003Google Scholar

    [13]

    Honer J, Löw R, Weimer H, Pfau T, Büchler H P 2011 Phys. Rev. Lett. 107 093601Google Scholar

    [14]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [15]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110Google Scholar

    [16]

    Su S L, Liang E J, Zhang S, Wen J J, Sun l l, Jin Z, Zhu A D 2016 Phys. Rev. A 93 012306Google Scholar

    [17]

    Su S L, Tian Y Z, Shen H Z, Zang H P, Liang E J, Zhang S 2017 Phys. Rev. A 96 042335Google Scholar

    [18]

    Su S L, Gao Y, Liang E J, Zhang S 2017 Phys. Rev. A 95 022319Google Scholar

    [19]

    Wu J L, Song J, Su S L 2020 Phys. Lett. A 384 126039Google Scholar

    [20]

    Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 45 1200Google Scholar

    [21]

    Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103 012601Google Scholar

    [22]

    Shao X Q, Li D X, Ji Y Q, Wu J H, Yi X X 2017 Phys. Rev. A 96 012328Google Scholar

    [23]

    Møller D, Madsen L B, Møller K 2008 Phys. Rev. Lett. 100 170504Google Scholar

    [24]

    Saffman M, Mølmer K 2009 Phys. Rev. Lett. 102 240502Google Scholar

    [25]

    Wu H Z, Li Y, Yang Z B, Zheng S B 2017 Phys. Rev. A 95 013842Google Scholar

    [26]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar

    [27]

    Barredo D, Lienhard V, Scholl P, de Léséleuc S, Boulier T, Browaeys A, Lahaye T 2020 Phys. Rev. Lett. 124 023201Google Scholar

    [28]

    Li D X, Shao X Q 2018 Phys. Rev. A 98 062338Google Scholar

    [29]

    Wintermantel T M, Wang Y, Lochead G, Shevate S, Brennen G K, Whitlock S 2020 Phys. Rev. Lett. 124 070503Google Scholar

    [30]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [31]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [32]

    Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [33]

    Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501Google Scholar

    [34]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [35]

    Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827Google Scholar

    [36]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839Google Scholar

    [37]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015Google Scholar

    [38]

    Beterov I I, Saffman M, Yakshina E A, Tretyakov D B, Entin V M, Hamzina G N, Ryabtsev I I 2016 J. Phys. B: At. Mol. Opt. Phys. 49 114007Google Scholar

    [39]

    Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7 041010Google Scholar

    [40]

    Misra B, Sudarshan E C G 1977 J. Math. Phys. 18 765

    [41]

    Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295Google Scholar

    [42]

    Facchi P, Gorini V, Marmo G, Pascazio S, Sudarshan E C G 2000 Phys. Lett. A 275 12Google Scholar

    [43]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401Google Scholar

    [44]

    Facchi P, Pascazio S 2008 J. Phys. A: Math. Theor. 41 493001Google Scholar

    [45]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303Google Scholar

    [46]

    Lu M, Xia Y, Shen L T, Song J, An N B 2014 Phys. Rev. A 89 012326Google Scholar

    [47]

    Chen X, Ruschhaupt A, Schmidt S, del Campo A, Guéry-Odelin D, Muga J G 2010 Phys. Rev. Lett. 104 063002Google Scholar

    [48]

    Chen X, Muga J G 2010 Phys. Rev. A 82 053403Google Scholar

    [49]

    Ji Y Q, Liu Y L, Zhou S J, Xiu X M, Dong L, Dong H K, Gao Y J, Yi X X 2019 Phys. Rev. A 99 023808Google Scholar

    [50]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [51]

    Zhang X L, Isenhower L, Gill A T, Walker T G, Saffman M 2010 Phys. Rev. A 82 030306Google Scholar

    [52]

    Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82 053832Google Scholar

    [53]

    Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110 090402Google Scholar

  • 图 1  (a)里德伯原子的能级结构; (b)里德伯超级原子的能级结构; (c)弱腔场极限下的里德伯超级原子能级结构

    Fig. 1.  (a) Energy levels configuration for Rydberg atom; (b) energy levels configuration for Rydberg superatom; (c) effective energy levels configuration for the superatom in the weak cavity field limit.

    图 2  腔与三个超级原子相互作用示意图

    Fig. 2.  Schematic illustration of the interaction between the a cavity and three superatoms.

    图 3  $t_{0}=0.14 t_{\rm{c}}$$T=0.19 t_{\rm{c}}$时的激光脉冲$\varOmega_{1}'$$\varOmega_{3}'$

    Fig. 3.  Laser pulse $\varOmega_{1}'$ and $\varOmega_{3}'$ when $t_{0}=0.14 t_{\rm{c}}$ and $T= $$ 0.19 t_{\rm{c}}$.

    图 4  利用绝热近似方法和绝热捷径方法制备三粒子单重态所需时间对比

    Fig. 4.  Comparison of the interaction time required between shortcuts to the adiabaticity method and the adiabatic approximation method.

    图 5  (a) 三粒子单重态的保真度随相互作用时间$g_{0}t_{\rm c}$和原子自发辐射$\gamma/g_{0}$的变化; (b) 三粒子单重态的保真度随腔衰减$\kappa/g_{0}$和原子自发辐射$\gamma/g_{0}$的变化

    Fig. 5.  (a) Fidelity of the singlet state versus the interaction time $g_{0}t_{\rm c}$ and the atomic spontaneous emission $\gamma/g_{0}$; (b) fidelity of the singlet state versus the cavity decay $\kappa/g_{0}$ and the atomic spontaneous emission $\gamma/g_{0}$

    Baidu
  • [1]

    Cabello A 2002 Phys. Rev. Lett. 89 100402Google Scholar

    [2]

    Mermin N D 1980 Phys. Rev. D 22 356Google Scholar

    [3]

    Cabello A 2003 J. Mod. Opt. 50 1049Google Scholar

    [4]

    Hsu L Y 2003 Phys. Rev. A 68 022306Google Scholar

    [5]

    Hillery M, Bužek V 2001 Phys. Rev. A 64 042303Google Scholar

    [6]

    Jin G S, Li S S, Feng S L, Zheng H Z 2005 Phys. Rev. A 71 034307Google Scholar

    [7]

    Lin G W, Ye M Y, Chen L B, Du Q H, Lin X M 2007 Phys. Rev. A 76 014308Google Scholar

    [8]

    Shao X Q, Wang H Fu, Chen L, Zhang S, Zhao Y F, Yeon K H 2010 New J. Phys. 12 023040Google Scholar

    [9]

    Lu M, Xia Y, Song J, Song H S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 015502Google Scholar

    [10]

    Shi Z C, Xia Y, Song J, Song H S 2013 Quantum Inf. Process. 12 411Google Scholar

    [11]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R, Lukin M D 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [12]

    Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003Google Scholar

    [13]

    Honer J, Löw R, Weimer H, Pfau T, Büchler H P 2011 Phys. Rev. Lett. 107 093601Google Scholar

    [14]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [15]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110Google Scholar

    [16]

    Su S L, Liang E J, Zhang S, Wen J J, Sun l l, Jin Z, Zhu A D 2016 Phys. Rev. A 93 012306Google Scholar

    [17]

    Su S L, Tian Y Z, Shen H Z, Zang H P, Liang E J, Zhang S 2017 Phys. Rev. A 96 042335Google Scholar

    [18]

    Su S L, Gao Y, Liang E J, Zhang S 2017 Phys. Rev. A 95 022319Google Scholar

    [19]

    Wu J L, Song J, Su S L 2020 Phys. Lett. A 384 126039Google Scholar

    [20]

    Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 45 1200Google Scholar

    [21]

    Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103 012601Google Scholar

    [22]

    Shao X Q, Li D X, Ji Y Q, Wu J H, Yi X X 2017 Phys. Rev. A 96 012328Google Scholar

    [23]

    Møller D, Madsen L B, Møller K 2008 Phys. Rev. Lett. 100 170504Google Scholar

    [24]

    Saffman M, Mølmer K 2009 Phys. Rev. Lett. 102 240502Google Scholar

    [25]

    Wu H Z, Li Y, Yang Z B, Zheng S B 2017 Phys. Rev. A 95 013842Google Scholar

    [26]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar

    [27]

    Barredo D, Lienhard V, Scholl P, de Léséleuc S, Boulier T, Browaeys A, Lahaye T 2020 Phys. Rev. Lett. 124 023201Google Scholar

    [28]

    Li D X, Shao X Q 2018 Phys. Rev. A 98 062338Google Scholar

    [29]

    Wintermantel T M, Wang Y, Lochead G, Shevate S, Brennen G K, Whitlock S 2020 Phys. Rev. Lett. 124 070503Google Scholar

    [30]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [31]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [32]

    Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [33]

    Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501Google Scholar

    [34]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [35]

    Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827Google Scholar

    [36]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839Google Scholar

    [37]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015Google Scholar

    [38]

    Beterov I I, Saffman M, Yakshina E A, Tretyakov D B, Entin V M, Hamzina G N, Ryabtsev I I 2016 J. Phys. B: At. Mol. Opt. Phys. 49 114007Google Scholar

    [39]

    Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7 041010Google Scholar

    [40]

    Misra B, Sudarshan E C G 1977 J. Math. Phys. 18 765

    [41]

    Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295Google Scholar

    [42]

    Facchi P, Gorini V, Marmo G, Pascazio S, Sudarshan E C G 2000 Phys. Lett. A 275 12Google Scholar

    [43]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401Google Scholar

    [44]

    Facchi P, Pascazio S 2008 J. Phys. A: Math. Theor. 41 493001Google Scholar

    [45]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303Google Scholar

    [46]

    Lu M, Xia Y, Shen L T, Song J, An N B 2014 Phys. Rev. A 89 012326Google Scholar

    [47]

    Chen X, Ruschhaupt A, Schmidt S, del Campo A, Guéry-Odelin D, Muga J G 2010 Phys. Rev. Lett. 104 063002Google Scholar

    [48]

    Chen X, Muga J G 2010 Phys. Rev. A 82 053403Google Scholar

    [49]

    Ji Y Q, Liu Y L, Zhou S J, Xiu X M, Dong L, Dong H K, Gao Y J, Yi X X 2019 Phys. Rev. A 99 023808Google Scholar

    [50]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [51]

    Zhang X L, Isenhower L, Gill A T, Walker T G, Saffman M 2010 Phys. Rev. A 82 030306Google Scholar

    [52]

    Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82 053832Google Scholar

    [53]

    Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110 090402Google Scholar

  • [1] 刘启沛, 张程贤, 薛正远. 强驱动单态-三重态量子比特的高保真单比特门.  , 2023, 72(20): 200302. doi: 10.7498/aps.72.20230906
    [2] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现.  , 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [4] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究.  , 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [5] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态.  , 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [6] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位.  , 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [7] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵.  , 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [8] 秦燕, 栗生长. 基于方波脉冲外场的超冷原子-分子绝热转化.  , 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [9] 张春玲, 刘文武. 基于绝热捷径快速实现远距离的四维纠缠态的制备.  , 2018, 67(16): 160302. doi: 10.7498/aps.67.20180315
    [10] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响.  , 2013, 62(18): 183402. doi: 10.7498/aps.62.183402
    [11] 李冠强, 彭娉, 曹振洲, 薛具奎. 超冷原子向异核四聚物分子A3B的绝热转化.  , 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [12] 刘野, 陈寿万, 郭建友. 复标度方法对原子核单粒子共振态的研究.  , 2012, 61(11): 112101. doi: 10.7498/aps.61.112101
    [13] 孙世艳, 贾祥富, 苗向阳, 李霞, 马晓艳. 共面双对称几何条件下电子碰撞Na原子单电离的三重微分截面.  , 2012, 61(9): 093402. doi: 10.7498/aps.61.093402
    [14] 邵文莉, 林永锋, 林枫灿, 彭开美, 张蕾, 王惠, 刘海洋, 计亮年. 中心金属Ga原子对Corrole三重态动力学及单线态氧产生的影响.  , 2012, 61(20): 207801. doi: 10.7498/aps.61.207801
    [15] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用.  , 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [16] 周艳微, 叶存云, 林 强, 王育竹. 基于绝热快速通道控制原子布居数及其相干性的研究.  , 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [17] 张程华, 邱 巍, 辛俊丽, 牛英煜, 王晓伟, 王京阳. 电子碰撞下氢原子单离化反应三重微分散射截面的计算.  , 2003, 52(10): 2449-2452. doi: 10.7498/aps.52.2449
    [18] 石玉珠, 李丽萍, 李毓成. 强磁场中氢原子能级的另一种绝热变分计算.  , 1998, 47(8): 1241-1247. doi: 10.7498/aps.47.1241
    [19] 刘家瑞, 雷子明, 杨锋, 潘广炎, 于德洪, 孙湘. 单、双电荷离子与原子碰撞中的激发态和发射截面比较.  , 1988, 37(8): 1254-1259. doi: 10.7498/aps.37.1254
    [20] 郑启泰, 沈福苓. 多解型重原子法.  , 1981, 30(6): 853-856. doi: 10.7498/aps.30.853
计量
  • 文章访问数:  4641
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2021-02-04
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-06-20

/

返回文章
返回
Baidu
map