Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improving electrochromic properties of tungsten trioxide by constructing gradient distribution oxygen vacancies through plasma treatment

JIANG Yihang CAO Fenghua LI Haomiao NIE Yongjie LI Guochang WEI Yanhui LU Guanghao LI Shengtao ZHU Yuanwei

Citation:

Improving electrochromic properties of tungsten trioxide by constructing gradient distribution oxygen vacancies through plasma treatment

JIANG Yihang, CAO Fenghua, LI Haomiao, NIE Yongjie, LI Guochang, WEI Yanhui, LU Guanghao, LI Shengtao, ZHU Yuanwei
cstr: 32037.14.aps.74.20241663
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In recent years, electrochromic materials have been extensively utilized in smart windows, displays, and dimmable devices. WO3, as a typical electrochromic material has received significant attention. Existing researches indicate that the concentration and distribution of oxygen vacancies in WO3 are both important in determining electrochromic effect. However, it has been reported that traditional preparation methods such as annealing can significantly reduce the ability to modulate the crystallinity and optical performance. Hence, proposing a novel approach to enhance the electrochromic properties of WO3 films holds important research significance and application prospects. In this work, the electrochromic properties of WO3 thin films are enhanced by increasing the oxygen vacancy concentration and forming its gradient distribution on the surface through plasma treatment. Firstly, the oxygen vacancy concentration and distribution of the film are optimized by regulating the power and duration of the plasma treatment. Secondly, the structure and optical properties of the plasma treated WO3 films are analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. Finally, the stability and response speed of each film during the electrochromic cycle are evaluated via electrochemical tests. Through plasma treatment, the concentrations of oxygen vacancies on the surfaces of WO3 films are all significantly increased, and a gradient distribution is formed, which is conducive to enhancing the ability to inject and extract electrons. The treated WO3 films demonstrate better electrochemical stability and chromic stability during the electrochromic cycle, and their transparencies and electrochromic response speeds are also significantly enhanced. Additionally, by increasing the concentration of oxygen vacancies through plasma treatment, the band gap of the film decreases and the electrical conductivity increases, which further validates the effectiveness of modulating concentration of oxygen vacancies on the electrical conductivity of WO3 film. Overall, these results indicate that plasma treatment is an emerging method of significantly improving the electrochromic properties of WO3 films.
      Corresponding author: LI Shengtao, zhuyuanwei@xjtu.edu.cn ; ZHU Yuanwei, sli@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52477028), the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, China (Grant No. PPCL2023-13), the Youth Fund of State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE23407), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. sxzy012023180).
    [1]

    Thai L H, Thanh N, Le T, Hiep N M, Khan D T, Dat T N, Truong S, Le V T, Truong T Q, Sinh L H 2024 Sol. Energy Mater Sol. Cells 278 113179Google Scholar

    [2]

    Invernale M A, Ding Y J, Sotzing G A 2010 ACS Appl. Mater. Interfaces 2 296Google Scholar

    [3]

    Liu L, Wang T, He Z B, Yi Y, Wang M Y, Luo Z H, Liu Q R, Huang J L, Zhong X L, Du K, Diao, X G 2021 Chem. Eng. J. 414 128892Google Scholar

    [4]

    Zhang D S, Wang J X, Tong Z F, Ji H B , Qu H Y 2021 Adv. Funct. Mater. 31 2106577Google Scholar

    [5]

    邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳 2022 71 028201Google Scholar

    Shao G W, Yu R, Fu T, Chen N L, Liu X Y 2022 Acta Phys. Sin. 71 028201Google Scholar

    [6]

    方成, 汪洪, 施思齐 2016 65 168201Google Scholar

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar

    [7]

    Shi, Y D, Sun M J, Zhang Y, Cui J W, Shu X, Wang Y, Qin Y Q, Liu J Q, Tan H H , Wu Y C 2020 ACS Appl. Mater. Interfaces 12 32658Google Scholar

    [8]

    Wang X Q, Yang Y, Jin Q Y, Lou Q C, Hu Q Z, Xie Z L, Song W J 2023 Adv. Funct. Mater. 33 2214417Google Scholar

    [9]

    Zheng Y F, Fu K X, Yu Z H, Su Y, Han R, Liu Q L 2023 J. Mater. Chem. A 10 14171Google Scholar

    [10]

    Shi Y D, Sun M J, Zhang Y, Cui J W, Wang Y, Shu X, Qin Y, Tan H H, Liu J Q, Wu Y C 2020 Sol. Energy Mater. Sol. Cells 212 110579Google Scholar

    [11]

    Yu H, Guo J J, Wang C, Zhang J Y, Liu J, Dong G B, Zhong X L, Diao X G 2020 Electrochim. Acta 332 135504Google Scholar

    [12]

    Li Z X, Liu Z F, Li J W, Yan W G 2022 Colloids Surf. , A 641 128615Google Scholar

    [13]

    Qiao N, Wei P, Xing Y F, Qin X S, Wang X, Li X, Bu L J, Lu G H, Zhu Y W 2022 Adv. Mater. Interfaces 9 2200713Google Scholar

    [14]

    Qiu Y M, Wei P, Wang Z H, Lu W L, Jiang Y H, Zhang C F, Qu Y Q, LuG H 2018 Phys. Status Solidi RRL 12 1800297Google Scholar

    [15]

    Xing Y F, Qiao N, Yu J D, Zhang M, Dai J P, Niu T T, Wang Y H, Zhu Y W, Bu L J, LuG H 2022 Rev. Sci. Instrum. 93 073903Google Scholar

    [16]

    陈锦峰, 朱林繁 2024 73 095201Google Scholar

    Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201Google Scholar

    [17]

    Shen Z C, Jiang Y H, Yu J D, Zhu Y W, Bu L J, LuG H 2020 Adv. Mater. Interfaces 8 2101476Google Scholar

    [18]

    Huang Y J, Li M, Pan F, Zhu Z Y, Sun H M, Tang Y W, Fu G T 2023 Carbon Energy 5 e279Google Scholar

    [19]

    Zhang G B, Xiong T F, Yan M Y, He L, Liao X B, He C Q, Yin C S, Zhang H N, Mai L Q 2018 Nano Energy 49 555Google Scholar

    [20]

    姜国平, 汪正兵, 闫永潘 2017 66 086801Google Scholar

    Jiang P G, Wang Z B, Yan Y P 2017 Acta Phys. Sin. 66 086801Google Scholar

    [21]

    Zhu Y W, Qiao N, Dong S Q, Qu G, Chen Y, Lu W L, Qin Z Z, Li D F, Wu K N, Nie Y J, Li S T, Lu G H 2022 Chem. Mater. 34 6505Google Scholar

    [22]

    杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 64 127301Google Scholar

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301Google Scholar

    [23]

    薛丽, 任一鸣 2016 65 156301Google Scholar

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301Google Scholar

    [24]

    Stampfl C, Van de Walle C 1999 Phys. Rev. B 59 5521Google Scholar

    [25]

    Arvizu M A, Qu H Y, Cindemir U, Qiu Z, Rojas-González E A, Primetzhofer D, Granqvis, C G, Österlund L, Niklasson G A 2019 J. Mater. Chem. A 7 2908Google Scholar

    [26]

    Khong Y J, Niang K M, Han S, Coburn N J, Wyatt-Moon G, Flewitt A J 2021 Adv. Mater. Interfaces 8 210049Google Scholar

    [27]

    Lee S H, Cheong M H, Han S, Tracy C E, Mascarenhas A, Czanderna A W, Deb S K 1999 Appl. Phys. Lett. 75 1541Google Scholar

  • 图 1  (a)WO3和(b)缺氧WO3的晶胞结构

    Figure 1.  Cell structures of (a) WO3 and (b) anoxic WO3.

    图 2  (a) WO3和(b)缺氧WO3的能带结构以及(c)总态密度

    Figure 2.  Band structure of (a) WO3 and (b) anoxic WO3 and (c) total state density.

    图 3  等离子体改性装置系统示意图

    Figure 3.  System diagram of plasma modification device.

    图 4  (a)不同处理前后的WO3薄膜XRD测试结果; (b)不同等离子体处理时长前后的WO3薄膜XRD测试结果

    Figure 4.  (a) XRD results of WO3 films before and after different treatments; (b) XRD results of WO3 films before and after different plasma treatment times.

    图 5  不同处理前后的WO3薄膜拉曼光谱测试结果

    Figure 5.  Raman spectrum test results of WO3 films before and after different treatments.

    图 6  不同处理前后的SEM图像

    Figure 6.  SEM images before and after different processing.

    图 7  不同处理前后 (a) W 4f和(b) O 1s高分辨率XPS光谱; (c)不同处理前后W 4f高分辨率XPS光谱的拟合分峰结果

    Figure 7.  (a) W 4f and (b) O 1s high-resolution XPS spectra before and after different treatments; (c) fitting peak-splitting results of W 4f high-resolution XPS spectra before and after different treatments.

    图 8  不同处理前后的WO3薄膜 (a) XPS和表面EDS 原子比; (b) 薄膜深度方向原子比

    Figure 8.  WO3 films before and after different treatment: (a) XPS and surface EDS atomic ratio; (b) film depth direction atomic ratio.

    图 9  等离子体处理前后的WO3薄膜的(a)透过率光谱和(b)带隙能量图

    Figure 9.  (a) Transmittance spectrum and (b) bandgap energy diagram of WO3 thin films before and after plasma treatment.

    图 10  (a)原始状态、(b)退火处理后和(c)等离子体处理后WO3薄膜不同电位范围的CV测试和注入和抽出电荷数量

    Figure 10.  CV tests and charge quantities inserted and extracted for (a) initial preparation, (b) after annealing and (c) after plasma treatment of WO3 films at different potential ranges.

    图 11  (a)原始状态、(b)退火处理后和(c)等离子体处理后WO3薄膜的CV测试和实时光谱透过率以及施加不同电压后的薄膜照片; (d)原始状态、(e)退火处理后和(f)等离子体处理后WO3薄膜在–1.0和+2.0 V电势下30s的电流密度变化(黑色曲线)、透光率变化(红色曲线)以及在有色和漂白状态之间的切换时间特性

    Figure 11.  CV test and real-time spectral transmittance of WO3 films at (a) initial preparation, (b) annealing and (c) plasma treatment, and photographs of films at different voltages; (d) changes in current density (black curve), transmittance (red curve) and switching time between colored and bleached WO3 films at –1.0 V and + 2.0 V potentials for 30s after initial preparation, (e) annealing and (f) plasma treatment.

    图 12  (a)原始状态、(b)退火处理后和(c)等离子体处理后WO3薄膜的长时CV测试; (d)原始状态、(e)退火处理后和(f)等离子体处理后WO3薄膜的长时透过率测试

    Figure 12.  Long-term CV tests of WO3 films (a) in their original state, (b) after annealing and (c) after plasma treatment; long term transmittance tests of WO3 films (d) in their original state, (e) after annealing, and (f) after plasma treatment.

    表 1  不同处理工艺方案的四探针电导率测试结果

    Table 1.  Results of four-probe conductivity tests for various treatment schemes.

    样品处理方式 电导率/(10–3 S·m–1)
    原始状态 8.27
    退火处理 25.30
    等离子体处理 10.80
    DownLoad: CSV

    表 2  不同等离子体处理工艺方案设计及测试结果

    Table 2.  Design and test results of different plasma treatment processes.

    等离子体放
    电功率/W
    改性时间/min O/W原子比 光学
    透过率/%
    5 10 2.86 84.5
    10 20 2.75 81.1
    20 30 2.58 74.2
    5 20 2.83 82.8
    10 30 2.71 78.4
    20 10 2.68 79.7
    5 30 2.80 80.6
    10 10 2.79 83.2
    20 20 2.63 76.3
    DownLoad: CSV
    Baidu
  • [1]

    Thai L H, Thanh N, Le T, Hiep N M, Khan D T, Dat T N, Truong S, Le V T, Truong T Q, Sinh L H 2024 Sol. Energy Mater Sol. Cells 278 113179Google Scholar

    [2]

    Invernale M A, Ding Y J, Sotzing G A 2010 ACS Appl. Mater. Interfaces 2 296Google Scholar

    [3]

    Liu L, Wang T, He Z B, Yi Y, Wang M Y, Luo Z H, Liu Q R, Huang J L, Zhong X L, Du K, Diao, X G 2021 Chem. Eng. J. 414 128892Google Scholar

    [4]

    Zhang D S, Wang J X, Tong Z F, Ji H B , Qu H Y 2021 Adv. Funct. Mater. 31 2106577Google Scholar

    [5]

    邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳 2022 71 028201Google Scholar

    Shao G W, Yu R, Fu T, Chen N L, Liu X Y 2022 Acta Phys. Sin. 71 028201Google Scholar

    [6]

    方成, 汪洪, 施思齐 2016 65 168201Google Scholar

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar

    [7]

    Shi, Y D, Sun M J, Zhang Y, Cui J W, Shu X, Wang Y, Qin Y Q, Liu J Q, Tan H H , Wu Y C 2020 ACS Appl. Mater. Interfaces 12 32658Google Scholar

    [8]

    Wang X Q, Yang Y, Jin Q Y, Lou Q C, Hu Q Z, Xie Z L, Song W J 2023 Adv. Funct. Mater. 33 2214417Google Scholar

    [9]

    Zheng Y F, Fu K X, Yu Z H, Su Y, Han R, Liu Q L 2023 J. Mater. Chem. A 10 14171Google Scholar

    [10]

    Shi Y D, Sun M J, Zhang Y, Cui J W, Wang Y, Shu X, Qin Y, Tan H H, Liu J Q, Wu Y C 2020 Sol. Energy Mater. Sol. Cells 212 110579Google Scholar

    [11]

    Yu H, Guo J J, Wang C, Zhang J Y, Liu J, Dong G B, Zhong X L, Diao X G 2020 Electrochim. Acta 332 135504Google Scholar

    [12]

    Li Z X, Liu Z F, Li J W, Yan W G 2022 Colloids Surf. , A 641 128615Google Scholar

    [13]

    Qiao N, Wei P, Xing Y F, Qin X S, Wang X, Li X, Bu L J, Lu G H, Zhu Y W 2022 Adv. Mater. Interfaces 9 2200713Google Scholar

    [14]

    Qiu Y M, Wei P, Wang Z H, Lu W L, Jiang Y H, Zhang C F, Qu Y Q, LuG H 2018 Phys. Status Solidi RRL 12 1800297Google Scholar

    [15]

    Xing Y F, Qiao N, Yu J D, Zhang M, Dai J P, Niu T T, Wang Y H, Zhu Y W, Bu L J, LuG H 2022 Rev. Sci. Instrum. 93 073903Google Scholar

    [16]

    陈锦峰, 朱林繁 2024 73 095201Google Scholar

    Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201Google Scholar

    [17]

    Shen Z C, Jiang Y H, Yu J D, Zhu Y W, Bu L J, LuG H 2020 Adv. Mater. Interfaces 8 2101476Google Scholar

    [18]

    Huang Y J, Li M, Pan F, Zhu Z Y, Sun H M, Tang Y W, Fu G T 2023 Carbon Energy 5 e279Google Scholar

    [19]

    Zhang G B, Xiong T F, Yan M Y, He L, Liao X B, He C Q, Yin C S, Zhang H N, Mai L Q 2018 Nano Energy 49 555Google Scholar

    [20]

    姜国平, 汪正兵, 闫永潘 2017 66 086801Google Scholar

    Jiang P G, Wang Z B, Yan Y P 2017 Acta Phys. Sin. 66 086801Google Scholar

    [21]

    Zhu Y W, Qiao N, Dong S Q, Qu G, Chen Y, Lu W L, Qin Z Z, Li D F, Wu K N, Nie Y J, Li S T, Lu G H 2022 Chem. Mater. 34 6505Google Scholar

    [22]

    杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 64 127301Google Scholar

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301Google Scholar

    [23]

    薛丽, 任一鸣 2016 65 156301Google Scholar

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301Google Scholar

    [24]

    Stampfl C, Van de Walle C 1999 Phys. Rev. B 59 5521Google Scholar

    [25]

    Arvizu M A, Qu H Y, Cindemir U, Qiu Z, Rojas-González E A, Primetzhofer D, Granqvis, C G, Österlund L, Niklasson G A 2019 J. Mater. Chem. A 7 2908Google Scholar

    [26]

    Khong Y J, Niang K M, Han S, Coburn N J, Wyatt-Moon G, Flewitt A J 2021 Adv. Mater. Interfaces 8 210049Google Scholar

    [27]

    Lee S H, Cheong M H, Han S, Tracy C E, Mascarenhas A, Czanderna A W, Deb S K 1999 Appl. Phys. Lett. 75 1541Google Scholar

  • [1] Wang Yu-Xiao, Cheng Ze-Shuai, Jiang Ke-Yang, Wei Lin-Yang, Li Xiu-Ming. Performance of adjustable multilayer film based on radiation cooling and electrochromism. Acta Physica Sinica, 2024, 73(21): 214401. doi: 10.7498/aps.73.20240863
    [2] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [3] Zhang Xing-Wen, He Chao-Tao, Li Xiu-Lin, Qiu Xiao-Yan, Zhang Yun, Chen Peng. Resistance switching effect regulated by magnetic field in Ni/ZnO/BiFeO3/ZnO multilayers. Acta Physica Sinica, 2022, 71(18): 187303. doi: 10.7498/aps.71.20220609
    [4] Shao Guang-Wei, Yu Rui, Fu Ting, Chen Nan-Liang, Liu Xiang-Yang. Growth behavior of WO3 crystal topological structure and its electrochromic properties. Acta Physica Sinica, 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [5] Wang Zhi-Qing, Yao Xiao-Ping, Shen Jie, Zhou Jing, Chen Wen, Wu Zhi. Micromechanism of ferroelectric fatigue and enhancement of fatigue resistance of lead zirconate titanate thin films. Acta Physica Sinica, 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [6] Tang Hui, Tang Xin-Gui, Jiang Yan-Ping, Liu Qiu-Xiang, Li Wen-Hua. Oxygen vacancy effect on ionic conductivity and relaxation phenomenon of SrxBa1–xNb2O6 ceramics. Acta Physica Sinica, 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [7] Chen Ya-Qi,  Xu Hua-Kai,  Tang Dong-Sheng,  Yu Fang,  Lei Le,  Ouyang Gang. Electrical transport properties and related mechanism of single SnO2 nanowire device. Acta Physica Sinica, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [8] Fang Cheng, Wang Hong, Shi Si-Qi. Research progress of electrochromic performances of WO3. Acta Physica Sinica, 2016, 65(16): 168201. doi: 10.7498/aps.65.168201
    [9] Gong Yu, Chen Bai-Hua, Xiong Liang-Ping, Gu Mei, Xiong Jie, Gao Xiao-Ling, Luo Yang-Ming, Hu Sheng, Wang Yu-Hua. Effect of oxygen vacancies on the fluorescence and phosphorescence properties of Ca5MgSi3O12:Eu2+, Dy3+. Acta Physica Sinica, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [10] Yang Chang-Ping, Li Min-Yi, Song Xue-Ping, Xiao Hai-Bo, Xu Ling-Fang. Effect of oxygen content on giant dielectric constant and dielectric process in CaCu3Ti4O12. Acta Physica Sinica, 2012, 61(19): 197702. doi: 10.7498/aps.61.197702
    [11] Ouyang Jian-Ming, Shao Fu-Qiu, Zou De-Bin. Numerical simulation of negative oxygen ion generation and temporal evolution in atmospheric plasma. Acta Physica Sinica, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [12] Du Hong-Liang, He Li-Ming, Lan Yu-Dan, Wang Feng. Influence of reduced electric field on the evolvement characteristics of plasma under conditions of N2/O2 discharge. Acta Physica Sinica, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [13] Yu Song-Nan, Wu Han-Hua, Chen Gen-Yu, Yuan Xin, Li Yue. Effect of Al(OH)3 sol concentration on characteristics of microarc oxidation coatings of titanium alloy. Acta Physica Sinica, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [14] Liu Yan-Yan, Liu Fa-Min, Shi Xia, Ding Peng, Zhou Chuan-Cang. Preparation, structure and ferromagnetic properties of perovskite BaFeO3 nanocrystals. Acta Physica Sinica, 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [15] Zhao Su-Chuan, Li Guo-Rong, Zhang Li-Na, Wang Tian-Bao, Ding Ai-Li. Dielectric properties of Na0.25K0.25Bi0.5TiO3 lead-free ceramics. Acta Physica Sinica, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [16] Li Bao-Shan, Zhu Zhi-Gang, Li Guo-Rong, Yin Qing-Rui, Ding Ai-Li. Frequency and temperature dependence of the hysteresis loop in PMnN-PZT ceramics. Acta Physica Sinica, 2005, 54(2): 939-943. doi: 10.7498/aps.54.939
    [17] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi. Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [18] Yang Xin-Sheng, Wang Yu, Dong Liang, Zhang Feng, Qi Li-Zhen. Electrochromic effect of nanostructured WO3 bulk. Acta Physica Sinica, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [19] Dai Fu-Ping, Lü Shu-Yuan, Feng Bo-Xue, Jiang Sheng-Rui, Chen Chong. Study on electrochromic performances of amorphous WO3 films. Acta Physica Sinica, 2003, 52(4): 1003-1008. doi: 10.7498/aps.52.1003
    [20] FENG BO-XUE, XIE LIANG, WANG JUN, JIANG SHENG-RUI, CHEN GUANG-HUA. STUDY ON ELECTROCHROMIC PERFORMANCES AND MECHANISM OF MICROCRYSTAL NiOxHy THIN FILMS FABRICATED BY R.F.DEPOSITION. Acta Physica Sinica, 2000, 49(10): 2066-2071. doi: 10.7498/aps.49.2066
Metrics
  • Abstract views:  880
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2024
  • Accepted Date:  02 January 2025
  • Available Online:  07 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回
Baidu
map