搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/ZnO/BiFeO3/ZnO多层膜中磁场调控的电阻开关效应

张兴文 何朝滔 李秀林 邱晓燕 张耘 陈鹏

引用本文:
Citation:

Ni/ZnO/BiFeO3/ZnO多层膜中磁场调控的电阻开关效应

张兴文, 何朝滔, 李秀林, 邱晓燕, 张耘, 陈鹏

Resistance switching effect regulated by magnetic field in Ni/ZnO/BiFeO3/ZnO multilayers

Zhang Xing-Wen, He Chao-Tao, Li Xiu-Lin, Qiu Xiao-Yan, Zhang Yun, Chen Peng
PDF
HTML
导出引用
  • 阻变存储器由于具有读取速度快、存储密度大、存储时间长、低功耗和结构简单等主要特点, 已被看为下一代非易失性随机存储器的重要候选者. 本文研究了Ni/ZnO/BiFeO3/ZnO/ITO多层纳米薄膜器件的电阻开关特性, 发现器件具有明显的双极性电阻开关效应, 而且样品的电阻开关特性随外加磁场的干涉会有明显变化, 包括开关比、耐受性和电导率. 磁场对Ni/ZnO/BiFeO3/ZnO/ITO薄膜器件的显著调控作用应该起源于磁场使得Ni/ZnO界面处的肖特基势垒改变. 这项工作可以为磁控电阻开关效应提供一种可能的新机制, 在未来的存储器器件中具有重要的潜在应用价值.
    The 21st century is an era of information. In recent years, people’s demand for better data storage performance and stronger data processing capacity of memorizer has been increasing, which has prompted continuous improvement and innovation of semiconductor integrated processes and technologies and accelerated the research progress of the next generation of memory devices to break through the limits of Moore’s law. Resistive memory has been regarded as an important candidate for the next generation of non-volatile random access memory due to its main characteristics such as fast reading speed, high storage density, long storage time, low power consumption, and simple structure. Resistive switching effects have been observed in various transition metal oxides and complex perovskite oxides, but the appropriate description of the resistive switching drive mechanism is still an important issue in the development of resistive random access memories. Therefore, further research is very important to clearly explain the phenomenon of resistance switching. With the demand for data storage and sensor applications increasing, materials with excellent ferroelectric and ferromagnetic properties have attracted great attention. The ZnO is an important semiconductor material with excellent optical and electrical properties. Bismuth ferrate (BiFeO3) has received much attention due to its excellent properties in epitaxial and polycrystalline thin films, with hundreds of publications devoted to it in the past few years. The ZnO and BiFeO3 are both important electronic materials and have important application value. Therefore, ZnO/BiFeO3/ZnO structure is adopted in this work to study the resistance switch characteristics. The resistance conversion effect in ZnO/BiFeO3/ZnO structure is measured. In this work, the Ni/ZnO/BiFeO3/ZnO/ITO multilayer nano-film storage device is prepared by magnetron sputtering coating technology. The device is characterized by X-ray diffractometer, scanning electron microscope and other equipment, and its resistance performance is further tested by Keithley 2400. The device exhibits obvious bipolar resistance switching effect, and the resistance switching characteristics of the sample, including switching ratio, tolerance and conductivity, vary significantly with the interference of the applied magnetic field. The bipolar resistance switching effect can be explained by the capture and release of oxygen vacancies trapped inside the material. The effect of magnetic field on Ni/ZnO/BiFeO3/ZnO/ITO thin film device should be attributed to the change of schottky barrier at Ni/ZnO interface, caused by magnetic field.
      通信作者: 陈鹏, pchen@swu.edu.cn
      Corresponding author: Chen Peng, pchen@swu.edu.cn
    [1]

    Zhou G D, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, Liao L, Xu C, Xiao G, Xiao L, Cheng J, Zheng S, Wang L, Song Q, Duan S 2021 Adv. Sci. 7 2003765Google Scholar

    [2]

    Ren S Q, Qin H W, Bu J P, Zhu G C, Xie J H, Hu J F 2015 Appl. Phys. Lett. 107 062404Google Scholar

    [3]

    庞华, 邓宁 2014 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [4]

    Wang J S, Liang D D, Wu L C, Li X P, Chen P 2018 Solid State Commun. 275 8Google Scholar

    [5]

    Sun B, Zhou G D, Guo T, Zhou Y N, Wu Y A 2020 Nano Energy 75 104938Google Scholar

    [6]

    Li H W, Wu S X, Hu P, Li D, Wang G L, Li S W 2017 Phys. Lett. A 381 2127Google Scholar

    [7]

    何朝滔, 卢羽, 李秀林, 陈鹏 2022 71 086102Google Scholar

    He C T, Lu Y, Li X L, Chen P 2022 Acta Phys. Sin. 71 086102Google Scholar

    [8]

    Wang Q W, Zhu Y D, Liu X L, Zhao M, Wei M C, Zhang F, Zhang Y, Sun B L, Li M Y 2015 Appl. Phys. Lett. 107 063502Google Scholar

    [9]

    Chen G, Song C, Chen C, Gao S, Zeng F, Pan F 2012 Adv. Mater. 24 3515Google Scholar

    [10]

    Selim F, Weber M, Solodovnikov D, Lynn K 2007 Phys. Rev. Lett. 99 085502Google Scholar

    [11]

    Xiong C Y, Lu Z Y, Yin S Q, Mou H M, Zhang X Z 2019 AIP Adv. 9 105030Google Scholar

    [12]

    Wang J M, Zhang X Z, Piao H G, Luo Z C, Xiong C Y, Wang X F, Yang F H 2014 Appl. Phys. Lett. 104 243511Google Scholar

    [13]

    Zhou G D, Wang Z R, Sun B, Zhou F C, Sun L F, Zhao H B, Hu X F, Peng X Y, Yan J, Wang H M, Wang W H, Li J, Yan B T, Kuang D L , Wang Y C, Wang L D, Duan S K 2022 Adv. Electron. Mater. 8 2101127Google Scholar

    [14]

    Tang Y Y, Zhang X W, Lu Y, Li X L, Chen P 2021 Funct. Mater. Lett. 14 2150025Google Scholar

    [15]

    Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J 2008 Appl. Phys. Lett. 92 022110Google Scholar

    [16]

    Hsieh W K, Lam K T, Chang S J 2015 Mater. Sci. Semicond. Process. 35 30Google Scholar

    [17]

    Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X, Chen W 2014 Appl. Phys. Lett. 104 232406Google Scholar

    [18]

    Ren S X, Dong W C, Tang H, Tang L Z, Li Z H, Sun Q, Yang H F, Yang Z G, Zhao J J 2019 Appl. Surf. Sci. 488 92Google Scholar

    [19]

    Zheng P P, Sun B, Chen Y Z, Elshekh H, Yu T, Mao S S, Zhu S H, Wang H Y, Zhao Y, Yu Z 2019 Appl. Mater. Today 14 21Google Scholar

    [20]

    Liang D D, Li X P, Wang J S, Wu L C, Chen P 2018 Solid State Electron. 145 46Google Scholar

    [21]

    Wang T, Cheng L L, Wang C X, Cheng W M, Wang H W, Sun H J, Chen J C, Miao X S 2020 IEEE Trans. Magn. 56 7505004Google Scholar

    [22]

    Sun B, Liu Y H, Zhao W X, Chen P 2015 RSC Adv. 5 13513Google Scholar

    [23]

    Zheng W C, Wang Y C, Jin C, Yin R H, Li D, Wang P, Liu S S, Wang X Y, Zheng D X, Bai H L 2020 Phys. Chem. Chem. Phys. 22 13277Google Scholar

    [24]

    Jena A K, Ajit K S, Mohanty J. 2020 Appl. Phys. Lett. 116 092901Google Scholar

    [25]

    Dwipak P S, Narayana J S 2017 Sci. Rep. 7 17224Google Scholar

    [26]

    Karuppasamy K, Rabani I, Vikraman D, Bathula C, Theerthagiri J, Bose R, Yim C J, Kathalingam A, Seo Y S, Kim H S 2021 Environ. Pollut. 272 116018Google Scholar

    [27]

    Xu J, Chang Y G, Zhang Y Y, Ma S Y, Qu Y, Xu C T 2008 Appl. Surf. Sci. 255 1996Google Scholar

    [28]

    Zhong T T, Qin Y F, Lv F Z, Qin H J, Tian X D 2021 Nanoscale Res. Lett. 16 178Google Scholar

    [29]

    Li X L, Li X P, Chen P 2021 J. Electron. Mater. 50 3972Google Scholar

    [30]

    Kim B, Mahata C, Ryu H, Ismail M, Yang B, Kim S 2021 Coatings 11 451Google Scholar

    [31]

    Hu C, Wang Q, Bai S, Xu M, He D Y, Lu D Y, Qi J 2017 Appl. Phys. Lett. 110 073501Google Scholar

    [32]

    Gu T K 2014 J. Appl. Phys. 115 203707Google Scholar

    [33]

    Junga K, Kimb K, Songc S, Park K 2019 Microelectron. Eng. 216 111015Google Scholar

    [34]

    陈勇 2015 硕士学位论文 (开封: 河南大学)

    Chen Y 2015 M. S. Thesis (Kaifeng: Henan University) (in Chinese)

  • 图 1  (a) ZnO/BiFeO3/ZnO/ITO器件的XRD谱图, 插图为其结构示意图; (b) ZnO/BiFeO3/ZnO结构的SEM图像

    Fig. 1.  (a) XRD pattern of ZnO/BiFeO3/ZnO/ITO device (the inset shows the structure of the sample); (b) SEM image of ZnO/BiFeO3/ZnO.

    图 2  (a) Ni/ZnO/BiFeO3/ZnO/ITO器件的I-V曲线; (b)相应的对数图

    Fig. 2.  (a) I-V curve of the Ni/ZnO/BiFeO3/ZnO/ITO device; (b) the corresponding logarithmic graph.

    图 3  Ni/ZnO/BiFeO3/ZnO/ITO器件在有磁场和无磁场下的I-V曲线A/m)

    Fig. 3.  I-V curves of the Ni/ZnO/BiFeO3/ZnO/ITO device with and without magnetic field.

    图 4  (a) Ni/ZnO/BiFeO3/ZnO/ITO器件循环30圈的I-V曲线; (b)器件在0.6 V下的高低电阻分布图; (c)器件在外加磁场时0.6 V下的高低电阻分布示意图; (d)为(b)和(c)分布图的组合图

    Fig. 4.  (a) I-V curves of the Ni/ZnO/BiFeO3/ZnO/ITO device with 30 cycles; (b) high and low resistance distribution diagram of the device at 0.6 V; (c) high and low resistance distribution diagram of the device at 0.6 V with external magnetic field; (d) combination diagram of panels (b) and (c).

    图 5  Ti/ZnO/BiFeO3/ZnO/ITO器件加磁与不加磁I-V曲线结合图

    Fig. 5.  Combination diagram of I-V curves of the Ti/ZnO/BiFeO3/ZnO/ITO device with magnetized and unmagnetized.

    图 6  (a) ZnO/BiFeO3/ZnO/ITO器件的XPS图; (b) Zn 2p的XPS图; (c) O 1s的XPS图

    Fig. 6.  (a) XPS survey spectrum of ZnO/BiFeO3/ZnO/ITO device; (b) XPS spectra of Zn 2p patterns; (c) XPS spectra of O 1s patterns

    图 7  (a) 低阻态下的双对数拟合图; (b)高阻态下的lnI$ \sqrt{V} $拟合图; (c)外加磁场时低阻态下的双对数拟合图; (d)外加磁场时高阻态下的lnI$ \sqrt{V} $拟合图

    Fig. 7.  (a) The log-log fitting diagram at LRS state; (b) lnI-$ \sqrt{V} $ fitting diagram at HRS state; (c) log-log fitting diagram at LRS state with external magnetic field; (d) lnI-$ \sqrt{V} $ fitting diagram at HRS state with external magnetic field.

    Baidu
  • [1]

    Zhou G D, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, Liao L, Xu C, Xiao G, Xiao L, Cheng J, Zheng S, Wang L, Song Q, Duan S 2021 Adv. Sci. 7 2003765Google Scholar

    [2]

    Ren S Q, Qin H W, Bu J P, Zhu G C, Xie J H, Hu J F 2015 Appl. Phys. Lett. 107 062404Google Scholar

    [3]

    庞华, 邓宁 2014 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [4]

    Wang J S, Liang D D, Wu L C, Li X P, Chen P 2018 Solid State Commun. 275 8Google Scholar

    [5]

    Sun B, Zhou G D, Guo T, Zhou Y N, Wu Y A 2020 Nano Energy 75 104938Google Scholar

    [6]

    Li H W, Wu S X, Hu P, Li D, Wang G L, Li S W 2017 Phys. Lett. A 381 2127Google Scholar

    [7]

    何朝滔, 卢羽, 李秀林, 陈鹏 2022 71 086102Google Scholar

    He C T, Lu Y, Li X L, Chen P 2022 Acta Phys. Sin. 71 086102Google Scholar

    [8]

    Wang Q W, Zhu Y D, Liu X L, Zhao M, Wei M C, Zhang F, Zhang Y, Sun B L, Li M Y 2015 Appl. Phys. Lett. 107 063502Google Scholar

    [9]

    Chen G, Song C, Chen C, Gao S, Zeng F, Pan F 2012 Adv. Mater. 24 3515Google Scholar

    [10]

    Selim F, Weber M, Solodovnikov D, Lynn K 2007 Phys. Rev. Lett. 99 085502Google Scholar

    [11]

    Xiong C Y, Lu Z Y, Yin S Q, Mou H M, Zhang X Z 2019 AIP Adv. 9 105030Google Scholar

    [12]

    Wang J M, Zhang X Z, Piao H G, Luo Z C, Xiong C Y, Wang X F, Yang F H 2014 Appl. Phys. Lett. 104 243511Google Scholar

    [13]

    Zhou G D, Wang Z R, Sun B, Zhou F C, Sun L F, Zhao H B, Hu X F, Peng X Y, Yan J, Wang H M, Wang W H, Li J, Yan B T, Kuang D L , Wang Y C, Wang L D, Duan S K 2022 Adv. Electron. Mater. 8 2101127Google Scholar

    [14]

    Tang Y Y, Zhang X W, Lu Y, Li X L, Chen P 2021 Funct. Mater. Lett. 14 2150025Google Scholar

    [15]

    Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J 2008 Appl. Phys. Lett. 92 022110Google Scholar

    [16]

    Hsieh W K, Lam K T, Chang S J 2015 Mater. Sci. Semicond. Process. 35 30Google Scholar

    [17]

    Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X, Chen W 2014 Appl. Phys. Lett. 104 232406Google Scholar

    [18]

    Ren S X, Dong W C, Tang H, Tang L Z, Li Z H, Sun Q, Yang H F, Yang Z G, Zhao J J 2019 Appl. Surf. Sci. 488 92Google Scholar

    [19]

    Zheng P P, Sun B, Chen Y Z, Elshekh H, Yu T, Mao S S, Zhu S H, Wang H Y, Zhao Y, Yu Z 2019 Appl. Mater. Today 14 21Google Scholar

    [20]

    Liang D D, Li X P, Wang J S, Wu L C, Chen P 2018 Solid State Electron. 145 46Google Scholar

    [21]

    Wang T, Cheng L L, Wang C X, Cheng W M, Wang H W, Sun H J, Chen J C, Miao X S 2020 IEEE Trans. Magn. 56 7505004Google Scholar

    [22]

    Sun B, Liu Y H, Zhao W X, Chen P 2015 RSC Adv. 5 13513Google Scholar

    [23]

    Zheng W C, Wang Y C, Jin C, Yin R H, Li D, Wang P, Liu S S, Wang X Y, Zheng D X, Bai H L 2020 Phys. Chem. Chem. Phys. 22 13277Google Scholar

    [24]

    Jena A K, Ajit K S, Mohanty J. 2020 Appl. Phys. Lett. 116 092901Google Scholar

    [25]

    Dwipak P S, Narayana J S 2017 Sci. Rep. 7 17224Google Scholar

    [26]

    Karuppasamy K, Rabani I, Vikraman D, Bathula C, Theerthagiri J, Bose R, Yim C J, Kathalingam A, Seo Y S, Kim H S 2021 Environ. Pollut. 272 116018Google Scholar

    [27]

    Xu J, Chang Y G, Zhang Y Y, Ma S Y, Qu Y, Xu C T 2008 Appl. Surf. Sci. 255 1996Google Scholar

    [28]

    Zhong T T, Qin Y F, Lv F Z, Qin H J, Tian X D 2021 Nanoscale Res. Lett. 16 178Google Scholar

    [29]

    Li X L, Li X P, Chen P 2021 J. Electron. Mater. 50 3972Google Scholar

    [30]

    Kim B, Mahata C, Ryu H, Ismail M, Yang B, Kim S 2021 Coatings 11 451Google Scholar

    [31]

    Hu C, Wang Q, Bai S, Xu M, He D Y, Lu D Y, Qi J 2017 Appl. Phys. Lett. 110 073501Google Scholar

    [32]

    Gu T K 2014 J. Appl. Phys. 115 203707Google Scholar

    [33]

    Junga K, Kimb K, Songc S, Park K 2019 Microelectron. Eng. 216 111015Google Scholar

    [34]

    陈勇 2015 硕士学位论文 (开封: 河南大学)

    Chen Y 2015 M. S. Thesis (Kaifeng: Henan University) (in Chinese)

  • [1] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性.  , 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [2] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展.  , 2023, 72(9): 096801. doi: 10.7498/aps.72.20222266
    [3] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成.  , 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [4] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强.  , 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [5] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响.  , 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [6] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率.  , 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [7] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究.  , 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [8] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究.  , 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [9] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展.  , 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [10] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟.  , 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [11] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布.  , 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [12] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [13] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究.  , 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [14] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响.  , 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [15] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析.  , 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [16] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算.  , 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [17] 沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平. Ga掺杂对ZnO纳米结构可见光发射的抑制效应.  , 2012, 61(16): 167105. doi: 10.7498/aps.61.167105
    [18] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响.  , 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [19] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究.  , 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [20] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究.  , 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
计量
  • 文章访问数:  3702
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-05-18
  • 上网日期:  2022-09-06
  • 刊出日期:  2022-09-20

/

返回文章
返回
Baidu
map