Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Various operating modes of optically controlled multi-gate thyristors

WANG Lingyun LIU Hongwei YUAN Jianqiang XIE Weiping LUAN Chongbiao LI Hongtao ZHANG Jiande CHEN Yi HE Yang LIU Xiaoli GAO Bin

Citation:

Various operating modes of optically controlled multi-gate thyristors

WANG Lingyun, LIU Hongwei, YUAN Jianqiang, XIE Weiping, LUAN Chongbiao, LI Hongtao, ZHANG Jiande, CHEN Yi, HE Yang, LIU Xiaoli, GAO Bin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to meet the switching requirements of high-frequency pulsed-power systems and further enhance the peak power and turn-on speed of solid-state switches, comparative experiments on the structure of optically controlled multi-gate thyristors and the parameter of injected light are investigated in this work. The research results show that semiconductor chips based on the multi-gate thyristor structure exhibit different conduction characteristics under varying laser injection conditions, resulting in unique inflection point curves. By establishing a switching model and changing the injected light parameters and circuit parameter models, three conceptual operating modes for the optically controlled multi-gate thyristor are proposed, they being photonic linear mode (Mode A), field-induced nonlinear mode (Mode C), and hybrid amplification mode (Mode B).Based on these concepts, the experimental validation tests are conducted, and the three distinct operating characteristics of the optically controlled multi-gate thyristor are confirmed. In Mode A, the conduction process is mainly related to the injected light power parameters, which is similar to the scenario in the linear mode of traditional light-guided switches, thus Mode A is suitable for the narrow pulse width applications. Mode C mainly focuses on carrier multiplication after injection, resembling the conduction characteristics of super thyristors (SGTO), and this mode is suitable for wide pulse width and high current applications. In Mode B, its initial conduction is related to the injected light parameters, while the later carrier multiplication continues from the earlier photonic linear mode, achieving characteristics of both fast rise time and wide pulse width, effectively integrating the advantages of light-guided switches and SGTOs.In Mode A, when injected laser energy is 8.5 mJ, a pulse width is 10 ns, and peak power is 0.85 MW, the switch operates at a voltage of 5.2 kV, an output current of 8.1 kA, turn-on time (10%—90%) of 18.4 ns, with a di/dt value reaching 440 kA/μs. The main characteristic is that the di/dt of the switch is linearly related to the injected laser energy, thereby achieving a fast rise time output, which reflects the photonic linear conduction mode. This mode is suitable for high-power, narrow-pulse, and fast-rise-time applications, such as high-power microwave sources, and its characteristics are similar to those of gas switches.In Mode C, when triggering laser energy is set to 250 μJ, a pulse width is 210 ns, and peak power is 1200 W, the switch operates at a voltage of 8.5 kV, a short-circuit current of 6 kA and a current rise time of 110 ns, achieving a di/dt value exceeding 55 kA/μs. The key characteristic is that the di/dt of the switch is unrelated to the injected laser energy but is related to the electric field applied across the switch, thus it can operates at large current and wide pulse width, which reflects the field-induced nonlinear conduction mode. This mode is suitable for high-power, wide-pulse, and slower-rise-time applications, such as large current detonation and electromagnetic drives, and its characteristics are similar to those of igniter tubes and triggered light.In Mode B, when triggering laser energy is set to 10 mJ, a pulse width is 20 ns, and peak power is 0.5 MW, the switch operates at a voltage of 4.6 kV, with a short-circuit current reaching 8.5 kA and a current rise time of 66 ns, achieving a di/dt value exceeding 129 kA/μs. The main characteristic is that the initial conduction of the switch satisfies the photonic linear conduction mode, while the later conduction exhibits the field-induced nonlinear conduction mode, thus achieving both fast-rise-time output and the capability for large current and wide pulse width, reflecting a hybrid conduction mode. This mode is suitable for high-power and wide-pulse applications, such as accelerator power supplies, its characteristics are similar to those of hydrogen thyratrons and pseudo-spark switches.The discovery and validation of multiple operating modes for the switch significantly enhance the di/dt and peak power of power semiconductor switching devices, laying a theoretical and experimental foundation for the development of semiconductor switches with ultra-high peak power. Additionally, the switching devices are packaged according to their different operating modes and have been used in accelerator power supplies, solid-state detonators, and high-stability pulse drive sources, achieving positive results.
  • 图 1  耐受直流型固态开关器件

    Figure 1.  Direct current tolerant solid-state switching.

    图 2  脉冲或关断型固态开关器件

    Figure 2.  Pulse or turn-off type solid-state switch.

    图 3  开关芯片结构示意图

    Figure 3.  Schematic diagram of switch chip structure.

    图 4  器件元胞结构尺寸与正向电场分布图

    Figure 4.  Cell structure dimensions and forward electric field distribution diagram of the chip.

    图 5  流片实现的多种尺寸的开关芯片

    Figure 5.  Fabricated switch chips in various sizes.

    图 6  光控多门极晶闸管测试电路及照片 (a)测试电路原理图; (b)测试电路照片

    Figure 6.  Optically controlled multi-gate thyristor test circuit and photos: (a) Schematic diagram of the test circuit; (b) photo of the test circuit.

    图 7  触发激光峰值功率与开关di/dt、导通延迟时间的关系图

    Figure 7.  Graph of the relationship between trigger laser peak power and switch di/dt, turn-on delay time.

    图 8  注入激光峰值功率与开关输出峰值功率比值关系图

    Figure 8.  Graph of the ratio relationship between injected laser peak power and switch output peak power.

    图 9  多种工作模式的设想及典型特征

    Figure 9.  Conceptual designs and typical characteristic diagrams of various operating modes.

    图 10  电路仿真的光控多门极晶闸管电流电压曲线图

    Figure 10.  Simulated current-voltage curve of an optically controlled multi-gate thyristor.

    图 11  电路中光控多门极晶闸管在0, 10, 70 ns时电子浓度分布

    Figure 11.  Electron concentration distribution in the optically controlled multi-gate thyristor at 0, 10, and 70 ns in the circuit.

    图 12  电路仿真的光控多门极晶闸管电流电压曲线图

    Figure 12.  Simulated current voltage curve diagram of an optically controlled multi-gate thyristor.

    图 13  电路中光控多门极晶闸管在0, 80, 600 ns时电子浓度分布图

    Figure 13.  Electron concentration distribution diagrams of the optically controlled multi-gate thyristor at 0, 80, and 600 ns in the circuit.

    图 14  A模式验证测试结构

    Figure 14.  Verification test structure for Mode A.

    图 15  A模式验证测试波形

    Figure 15.  Verification test waveform for Mode A.

    图 16  C模式下测试电路

    Figure 16.  Test circuit in Mode C.

    图 17  C模式下电压电流波形

    Figure 17.  Voltage and current waveforms in Mode C.

    图 18  B模式下测试电路

    Figure 18.  Test circuit in Mode B.

    图 19  B模式下测试波形

    Figure 19.  Test waveform in Mode B.

    图 20  基于不同模式特征完成的3种封装 (a) A模式特征器件封装; (b) B模式特征器件封装; (c) C模式特征器件封装

    Figure 20.  Three packages based on different mode characteristics: (a) Mode A characteristic device Package; (b) Mode B characteristic device package; (c) Mode C characteristic device package.

    图 21  基于开关的多模式特征研制的器件开展的典型应用验证 (a)多路同步固态起爆器应用; (b) KDP光开关驱动脉冲源应用

    Figure 21.  Typical application verification of devices developed based on multi-mode switch characteristics: (a) Multi-channel synchronous solid-state initiator application; (b) KDP optical switch drive pulse source application.

    表 1  激光参数与开关典型参数实验数据表

    Table 1.  Experimental data table of laser parameters and typical switch parameters.

    激光功率
    /MW
    激光能量
    /mJ
    充电电压
    /kV
    电压下降
    时间/ns
    电流峰值
    /kA
    电流上升
    时间/ns
    导通延迟
    时间/ns
    电流脉冲
    宽度/ns
    开关峰值
    功率/MW
    功率比值/N di/dt/(kA
    ·μs-1)
    2.16 21.6 4.5 44.3 10.54 67.2 13.5 652 47.4 22 157
    1.92 19.2 4.5 44.6 10.54 67.3 12.6 654 47.4 25 157
    1.68 16.8 4.5 45.4 10.48 65.3 12.1 665 47.2 28 160
    1.47 14.7 4.5 45.4 10.42 66.4 11 667 46.9 32 157
    1.32 13.2 4.5 46.3 10.34 64.3 10.1 661 46.5 35 161
    1.08 10.8 4.5 48.6 10.35 68 8.88 663 46.6 43 152
    0.87 8.7 4.5 50.2 10.07 71.6 10.2 684 45.3 52 141
    0.678 6.78 4.5 46 9.71 65.1 13.7 742 43.7 64 149
    0.6 6 4.5 47.4 9.71 65.1 13.5 742 43.7 73 149
    0.54 5.4 4.5 52.5 9.41 62.7 13.5 765 42.3 78 150
    0.46 4.6 4.5 60.3 9.17 63.3 13.4 795.6 41.3 90 145
    0.39 3.9 4.5 68 8.62 63 14.1 832 38.8 99 137
    0.3 3 4.5 128 8.52 70.5 15.4 829 38.3 128 121
    0.24 2.4 4.5 158.4 8.48 95.8 18.6 835 38.2 159 89
    0.162 1.62 4.5 196 8.39 130.4 25.9 842 37.8 233 64
    0.072 0.72 4.5 221 8.13 222 52.6 857 36.6 508 37
    0.057 0.57 4.5 254 8.23 199 96 848 37.0 650 41
    0.0474 0.474 4.5 249.7 8.23 202 102 850 37.0 781 41
    0.0438 0.438 4.5 263 8.22 197.8 108 869 37.0 845 42
    0.0372 0.372 4.5 265 8.19 208.9 119 858 36.9 991 39
    0.0312 0.312 4.5 278 8.17 218 133 852 36.8 1178 37
    0.0252 0.252 4.5 252 8.16 212 153 874 36.7 1457 38
    0.0186 0.186 4.5 251 8.13 203 181 878 36.6 1967 40
    0.0126 0.126 4.5 271 7.97 212 276 897 35.9 2846 38
    0.0048 0.048 4.5 351 7.78 245 406 955 35.0 7294 32
    DownLoad: CSV

    表 2  器件驱动激光能量、短路电流、开通前沿的关系

    Table 2.  The relationship between device drive laser energy, short-circuit current, and turn-on edge.

    激光能量/mJ工作电压/kV短路电流/kA电流前沿
    /ns
    电流脉宽
    /ns
    di/dt
    /(kA·μs–1)
    0.941.8866.875.028
    2.143.424049.086
    2.643.7536.646.0102
    3.645.6520.436.7277
    4.645.8418.836.0311
    5.446.4818.938.0343
    6.34718.737.7374
    7.447.318.638.7392
    8.547.9118.638.3425
    DownLoad: CSV

    表 3  不同电压下开关的导通特性

    Table 3.  The conduction characteristics of the switch at different voltages.

    激光
    能量/μJ
    工作
    电压
    /kV
    短路
    电流/kA
    电流
    前沿
    /ns
    di/dt
    /
    (kA·μs–1)
    2005.02.012816
    2006.02.812123
    2007.03.911833
    2008.05.411149
    2008.56.011055
    DownLoad: CSV
    Baidu
  • [1]

    刘锡三 2005 高功率脉冲技术(北京: 国防工业出版社) 第367页

    Liu X S 2005 High Pulsed Power Technology (Beijing: National Defense Industry Press) p367

    [2]

    周前红, 董志伟, 简贵胄, 周海京 2015 64 205206Google Scholar

    Zhou Q H, Dong Z W, Jian G Z, Zhou H J 2015 Acta Phys. Sin. 64 205206Google Scholar

    [3]

    施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平 2009 58 1219Google Scholar

    Shi W, Tian L Q, Wang X M, Xu M, Ma D M, Zhou L J, Liu H W, Xie W P 2009 Acta Phys. Sin. 58 1219Google Scholar

    [4]

    王公堂, 刘秀喜 2010 59 1964Google Scholar

    Wang G T, Liu X X 2010 Acta Phys. Sin. 59 1964Google Scholar

    [5]

    Loquai S, Bölting M, Kellner U, Fischer J, Poisel H 2015 The 24th International Conference on Plastic Optical Fibers Nuremberg, Germany, September 22-24, 2015 p193

    [6]

    王凌云 2018 硕士学位论文(成都: 电子科技大学)

    Wang L Y 2018 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [7]

    王彩琳, 高勇, 马丽, 张昌利, 金垠东, 金相喆 2005 54 2296Google Scholar

    Wang C L, Gao Y, Ma L, Zhang C L, Kim E, Kim S 2005 Acta Phys. Sin. 54 2296Google Scholar

    [8]

    Wang Y N, Ren L Y, Yang Z H, Shen S K, Deng Z C, Yuan Q, Ding W D, Ding Z J 2024 High Volt. 9 2Google Scholar

    [9]

    刘宾礼, 刘德志, 罗毅飞, 唐勇, 汪波 2013 62 057202Google Scholar

    Liu B L, Liu D Z, Luo Y F, Tang Y, Wang B 2013 Acta Phys. Sin. 62 057202Google Scholar

    [10]

    Sanders H, Glidden S, Dunham C 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC) San Diego, CA, USA, June 3-7, 2012 p335

    [11]

    Waldron J, Brandmier K 2017 IEEE International Conference on Plasma Science (ICOPS) Atlantic City, NJ, USA, May 21-25, 2017 p1

    [12]

    Waldron J , Brandmier K , Temple V 2015 Pulsed Power Conference. IEEE Austin, Texas, USA, May 31 – June 4, 2015 p7296986

    [13]

    Chen W J, Liu C, Shi Y J, Liu Y W, Hong T, Liu C F, Zhou Q, Li Z J, Zhang B 2017 IEEE Trans. Electron Dev. 64 4206Google Scholar

    [14]

    He D Z, Sun W J, Liao Y X, Zhang P H, Yu L, Dong S L, Yao C G, Liu X 2023 High Volt. 8 698Google Scholar

    [15]

    M Junaid, Yu W Q, Cao S Z, Yu X L, Yu D S, Zong W L, Wang J H 2023 High Volt. 8 1275Google Scholar

    [16]

    袁雪林, 张洪德, 徐哲峰, 丁臻捷, 俞建国, 浩庆松, 曾搏, 胡龙 2010 固体电子学研究与进展 30 64Google Scholar

    Yuan X L, Zhang H D, Xu Z F, Ding Z J, Yu J G, Hao Q S, Zeng B, Hu L 2010 Res. Prog. SSE 30 64Google Scholar

    [17]

    Rukin S N 2020 Rev. Sci. Instrum. 91 011501Google Scholar

    [18]

    田立强, 潘璁, 施卫, 潘艺柯, 冉恩泽, 李存霞 2023 72 178101Google Scholar

    Tian L Q, Pan C, Shi W, Pan Y K, Ran E Z, Li C X 2023 Acta Phys. Sin. 72 178101Google Scholar

    [19]

    桂淮濛, 施卫 2018 67 184207Google Scholar

    Gui H M, Shi W 2018 Acta Phys. Sin. 67 184207Google Scholar

    [20]

    洪武, 梁琳, 余岳辉 2012 61 058501Google Scholar

    Hong W, Liang L, Yu Y H 2012 Acta Phys. Sin. 61 058501Google Scholar

    [21]

    米彦, 万佳仑, 卞昌浩, 姚陈果, 李成祥 2017 电工技术学报 32 244

    Mi Y, Wan J L, Bian C H, Yao C G, Li C X 2017 Trans. China Electrotech. Soc. 32 244

    [22]

    Rodin P, Ivanov M 2020 J. Appl. Phys. 127 044504Google Scholar

    [23]

    梁琳, 颜小雪, 黄鑫远, 卿正恒, 杨泽伟, 尚海 2022 中国电机工程学报 42 8631

    Liang L, Yan X X, Huang X Y, Qing Z H, Yang Z W, Shang H 2022 Proc. CSEE 42 8631

    [24]

    Lyublinsky A G, Korotkov S V, Aristov Y V, Korotkov D A 2013 IEEE Trans. Plasma Sci. 41 2625Google Scholar

    [25]

    王凌云, 刘宏伟, 袁建强, 谢卫平, 颜家圣 2024 电工技术学报 39 7566

    Wang L Y, Liu H W, Yuan J Q, Xie W P, Yan J S 2024 Trans. China Electrotech. Soc. 39 7566

  • [1] Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi. Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity. Acta Physica Sinica, doi: 10.7498/aps.73.20240110
    [2] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Design of input parameters and operating characteristics for multi-mode ion thruster. Acta Physica Sinica, doi: 10.7498/aps.71.20212045
    [3] Li Jian-Peng, Zhao Yi-De, Jin Wu-Yin, Zhang Xing-Min, Li Juan, Wang Yan-Long. Design and performance test of discharge chamber and grid for multi-mode ion thrusters. Acta Physica Sinica, doi: 10.7498/aps.71.20220720
    [4] Chai Jin-Hua, Chen Fei. Methodology of filter-type multi-dithering phase control for quasi parallel light interference. Acta Physica Sinica, doi: 10.7498/aps.67.20171562
    [5] Qi Yun-Ping, Nan Xiang-Hong, Bai Yu-Long, Wang Xiang-Xian. All-optical diode of subwavelength single slit with multi-pair groove structure based on SPPs-CDEW hybrid model. Acta Physica Sinica, doi: 10.7498/aps.66.117102
    [6] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source. Acta Physica Sinica, doi: 10.7498/aps.66.095203
    [7] Shi Guo-Dong, Zhang Hai-Ming, Bao Bo-Cheng, Feng Fei, Dong Wei. Dynamical modeling and multi-periodic behavior analysis on pulse train controlled DCM-DCM BIFRED converter. Acta Physica Sinica, doi: 10.7498/aps.64.010501
    [8] Xue Chuang, Ding Ning, Sun Shun-Kai, Xiao De-Long, Zhang Yang, Huang Jun, Ning Cheng, Shu Xiao-Jian. Full circuit model for coupling pulsed power driver with Z-pinch load. Acta Physica Sinica, doi: 10.7498/aps.63.125207
    [9] Zhou Jian-Wei, Liang Jing-Qiu, Liang Zhong-Zhu, Tian Chao, Qin Yu-Xin, Wang Wei-Biao. Tunable two-dimensional photonic crystal cavity all-optical switching infiltrated with liquid-crystal. Acta Physica Sinica, doi: 10.7498/aps.62.134208
    [10] Huang Pei-Pei, Liu Da-Gang, Liu La-Qun, Wang Hui-Hui, Xia Meng-Ju, Chen Ying. Three-dimensional numerical simulation of the single-channel pulsed-power vacuum device. Acta Physica Sinica, doi: 10.7498/aps.62.192901
    [11] Xiang Fei, Tan Jie, Luo Min, Wang Gan-Ping, Kang Qiang. Fast linear transformer high power pulse generator. Acta Physica Sinica, doi: 10.7498/aps.60.064102
    [12] Li Wei-Chang, Wang Zhao-Hua, Liu Cheng, Teng Hao, Wei Zhi-Yi. Contrast ratio of femtosecond ultraintense Ti:sapphire laser with multi-pass amplifier. Acta Physica Sinica, doi: 10.7498/aps.60.124210
    [13] Wang Jin-Ping, Xu Jian-Ping, Xu Yang-Jun. Analysis of multi-switching period oscillation phenomenon in constant on-time controlled buck converter. Acta Physica Sinica, doi: 10.7498/aps.60.058401
    [14] Hao Yan-Peng, Yang Lin, Tu En-Lai, Chen Jian-Yang, Zhu Zhan-Wen, Wang Xiao-Lei. Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges. Acta Physica Sinica, doi: 10.7498/aps.59.2610
    [15] Yang Bing-Xing, Xia Guang-Qiong, Lin Xiao-Dong, Wu Zheng-Mao. Polarization switching performance of VCSEL subjected to optical pulse injection. Acta Physica Sinica, doi: 10.7498/aps.58.1480
    [16] Qu Guang-Hui, Shi Wei. Inductive current and conductive current in photoconductor switches. Acta Physica Sinica, doi: 10.7498/aps.55.6068
    [17] Ling Wei-Jun, Wang Zhao-Hua, Wang Peng, Jia Yu-Lei, Tian Jin-Rong, Wei Zhi-Yi. The main multi-pass amplifier with double-side pumped Ti:sapphire. Acta Physica Sinica, doi: 10.7498/aps.54.1208
    [18] Cheng Zhao-Gu, Li Xian-Qin, Chai Xiong-Liang, Gao Hai-Jun, Liu Cui-Qing. High power pulse CO2 laser with preionization burst-mode switch technology. Acta Physica Sinica, doi: 10.7498/aps.53.1362
    [19] SHAO HAO, LIU GUO-ZHI. STUDIES OF OUTWARD-EMITTING COAXIAL VIRCATOR. Acta Physica Sinica, doi: 10.7498/aps.50.2387
    [20] ZHANG SHU-KUI, WEN GUO-QING, ZHOU PI-ZHANG, WANG XIAO-DONG, MAN YONG-ZAI, PENG HAN-SHENG, WANG QING-YUE. THEORETICAL AND EXPERIMENTAL STUDIES ON THE CHIRPED PULSE MULTIPASS AMPLIFICATION IN DOUBLE SIDE PUMPED Ti:SAPPHIRE. Acta Physica Sinica, doi: 10.7498/aps.46.908
Metrics
  • Abstract views:  345
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2024
  • Accepted Date:  10 January 2025
  • Available Online:  14 January 2025

/

返回文章
返回
Baidu
map