Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of coil deformation on magnetic topology structure in Chinese first quasi-toroidally symmetric stellarator

LI Dan LIU Haifeng

Citation:

Influence of coil deformation on magnetic topology structure in Chinese first quasi-toroidally symmetric stellarator

LI Dan, LIU Haifeng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The configuration deformation of stellarator coil is inevitable during fabrication and assembly, resulting in error fields. The magnetic field configuration in stellarator is sensitive to the error field, which seriously restricts the confinement performance of the plasma. Therefore, it is essential to estimate the influence of coil deformations on a stellarator magnetic topology. This work is dedicated to studying the influence of deformations of nonplanar modular coils (MC) on the magnetic topology in the Chinese First Quasi-toroidally symmetric Stellarator (CFQS). In this work, by changing the Fourier coefficients that represent the current-carrying surface(CCS) and the coil, two types of deformation coils, i.e. "in-surface" and "out-of-surface" disturbance on each MC can be obtained. Subsequently, three kinds of magnetic islands with rotational transformsι = 2/4, 2/5, and 2/6 are used to identify coil deviations that have a significant influence on the CFQS magnetic configuration. Several important results are obtained as follows. i) The same deformation of a coil gives rise to various resonant error fields with different amplitudes. ii) The sensitivity of a resonant error field to the deformation of each coil is different. The in-surface disturbance of the most complex coil may not have a significant influence on the magnetic topology structure. iii) The sensitivity of the resonant error field to out-of-surface disturbance in the coil is higher than that to in-surface disturbance. These results indicate that relaxing the configuration error of specific coil will not significantly affect the magnetic field configuration of the stellarator, which is expected to alleviate engineering limitations on MC coil design and fabrication. In addition, this work will also contribute to providing an accurate computational model for the upcoming CFQS magnetic configuration tracing experiment.
  • 图 1  CFQS的线圈系统, 线圈系统包含16个非平面模块化线圈, 12个环向场线圈和4个极向场线圈

    Figure 1.  Main components of the CFQS coil system, the coil system includes 16 non-planar modular coils, 12 planar toroidal field coils, and 4 poloidal field coils.

    图 2  (a) 由磁力线追踪计算得到的理想MC线圈产生的磁场在环向角ξ = 90°横截面处的庞加莱图(黑色虚线)和目标等离子体边界(红色虚线), 追踪的初始位置在Z = 0, R∈[0.5446, 0.8359]处, 追踪周期为270; (b) 与该磁场截面对应的旋转变换剖面, 横坐标为归一化半径

    Figure 2.  (a) Poincaré plots (black dots) based on tracing field lines in the magnetic configuration produced by the designed MCs and the target plasma boundary (red dashed) at the triangular-shaped cross-section, field lines with initial positions R∈ [0.5446, 0.8359] and Z = 0 are traced 270 periods; (b) the corresponding rotational transform profile with the normalized radius as its abscissa.

    图 3  由理想线圈产生的n/m = 2/4 (a), 2/5(b)和2/6(c) 的3种磁岛位形的庞加莱截面图及旋转变换剖面, 横坐标表示从主磁轴到磁场外侧的半径, 每个磁面的追踪周期为540, 追踪的初始位置为 (a) Z = 0, R∈[0.54, 0.81]; (b) Z = 0, R∈[0.56, 0.83]; (c) Z = 0, R∈[0.44, 0.76]

    Figure 3.  Poincaré plots of three island configurations with n/m = 2/4 (a), 2/5(b) and 2/6(c) and their rotational transform profiles produced by undeformed coils, the abscissa denotes radius from the main magnetic axis to the outboard side, field lines with initial positions R∈[0.54, 0.81] and Z = 0 (a), R∈[0.56, 0.83] and Z = 0 (b), R∈[0.44, 0.76] and Z = 0 (c) are traced 540 periods.

    图 4  四种不同类型MC线圈的面内(a)和面外(b)形变分布, 在MC1, MC2, MC3和MC4上设置($ {\delta }_{1} $, $ {\delta }_{2} $) = (0.00003, 0.0001), (0.00002, 0.00009), (0.00002, 0.00009)和(0.00004, 0.000095)以产生线圈的面内扰动, 在CCS上设置$ {\delta }_{3} $ = 0.0113, 0.086, 0.094, 0.074以产生面外线圈扰动, 在这两种情况下, 每个MC的最大形变量均为10 mm, $ {\delta }_{1} $, $ {\delta }_{2} $, $ {\delta }_{3} $的数值均为随机选取

    Figure 4.  Local (a) and broad (b) deformation distributions on four different types of MCs, ($ {\delta }_{1} $, $ {\delta }_{2} $) = (0.00003, 0.0001), (0.00002, 0.00009), (0.00002, 0.00009), (0.00004, 0.000095) are set on MC1, MC2, MC3 and MC4 to produce local perturbations of coils and $ {\delta }_{3} $ = 0.0113, 0.086, 0.094, 0.074 are set on MC1, MC2, MC3, MC4 to produce broad perturbations of coils. For these two cases the maximum deformation of each MC is 10 mm.

    图 5  扰动MC1线圈使其产生最大形变量为10 mm时的3种磁岛位形的庞加莱截图, 红色虚线和蓝色虚线分别表示由理想线圈产生的磁岛边界和MC1线圈发生形变时的磁岛边界. 场线数值与图4相同

    Figure 5.  Poincaré plots of three island configurations with n/m = 2/4 (a), 2/5(b) and 2/6(c) produced by perturbed MC1 with the maximum deviations of 10 mm (other coils sustain undeformed). Red and blue dots denote boundaries of the island chains induced by designed coils and the deformed MCs. Numerical details for field line tracing are the same as shown in Fig. 4.

    图 6  n/m = 2/4(a), 2/5(b), 2/6(c)岛链中, 磁岛宽度变化量的绝对值与线圈最大形变量的关系, 每个MC线圈的形变扰动均受到载流面的限制

    Figure 6.  The absolute value of the magnetic island width as a function of dmax of each MC in n/m = 2/4 (a), 2/5(b) and 2/6(c) island chains, the deformations of each MC are without perturbations of CCS.

    图 7  n/m = 2/4(a), 2/5(b), 2/6(c)岛链中, 误差场振幅与MC线圈最大形变量的关系, 每个MC线圈的形变扰动均受到载流面的限制

    Figure 7.  The amplitudes of error fields as a function of dmax of each MC in n/m = 2/4 (a), 2/5(b) and 2/6(c) island chains, the deformations of each MC are without perturbations of CCS.

    图 9  n/m = 2/4(a), 2/5(b)和2/6(c)岛链中, 误差场振幅与MC线圈最大形变量的关系. 每个MC线圈的形变扰动均未受到载流面的限制

    Figure 9.  The amplitudes of error fields as a function of dmax of each MC in n/m = 2/4 (a), 2/5(b) and 2/6(c) island chains, the deformations of each MC are with perturbations of CCS.

    图 8  n/m = 2/4(a), 2/5(b), 2/6(c)的岛链中, 磁岛宽度变化量的绝对值与MC线圈最大形变量之间的关系, 每个MC线圈的形变扰动均未受到载流面的限制

    Figure 8.  The absolute value of the magnetic island width as a function of dmax of each MC in n/m = 2/4 (a), 2/5(b) and 2/6(c) island chains. The deformations of each MC are with perturbations of CCS.

    表 1  CFQS中3种磁岛位形下, 模块化线圈、环向场线圈和极向场线圈的电流设置

    Table 1.  Coil currents in MCs, TFCs and PFCs for n/m = 2/4, 2/5, and 2/6 magnetic island configurations of CFQS.

    磁岛位形(n/m)
    2/4 2/5 2/6
    线圈电流 IMC/kA MC1 312.5 312.5 406.3
    MC2 281.6
    MC3
    MC4
    ITFC/kA TFC_10 –60 –24 0
    TFC_32 –90 –36
    TFC_70
    IPFC/kA PFC_OV 0 0 –82
    PFC_IV 41
    DownLoad: CSV
    Baidu
  • [1]

    Rummel T, Risse K, Viebke H, Braeuer T, Kisslinger J 2004 IEEE Trans. Appl. Supercond. 14 1394Google Scholar

    [2]

    Xiong G Z, Xu Y H, Isobe M, Shimizu A, Ogawa K, Kinoshita S, Liu H F, Wang X Q, Cheng J, Liu H, Huang J, Zhang X, Zhang Y C, Yin D P, Wang A Z, Okamura S, Tang C J 2023 Plasma Phys. Control. Fusion 65 035020Google Scholar

    [3]

    Shoji M, Shimizu A, Kinoshita S, Okamura S, Xu Y H, Liu H F 2023 Plasma Fusion Res. 18 2405026Google Scholar

    [4]

    Boozer A H 2005 Rev. Mod. Phys. 76 1071Google Scholar

    [5]

    Waelbroeck F L 2009 Nucl. Fusion 49 104025Google Scholar

    [6]

    Lazerson S A, Bozhenkov S, Israeli B, Otte M, Niemann H, Bykov V, Endler M, Andreeva T, Ali A, Drewelow P, Jakubowski M, Sitjes A P, Pisano F, Cannas B, W7-X Team 2018 Plasma Phys. Control. Fusion 60 124002Google Scholar

    [7]

    Kißlinger J, Andreevab T 2005 Fusion Eng. Des. 74 623Google Scholar

    [8]

    Andreeva T, Bräuer T, Endler M, Kißlinger J, Toussaint U V 2009 Fusion Eng. Des. 84 408Google Scholar

    [9]

    Yamazaki K, Yanagi N, Ji H, Kaneko H, Ohyabu N, Satow T, Morimoto S, Yamamoto J, Motojima O, the LHD Design Group 1993 Fusion Eng. Des. 20 79Google Scholar

    [10]

    Strykowsky R L, Brown T, Chrzanowski J, Cole M, Heitzenroeder P, Neilson G H, Rej D, Viol M 2009 23rd IEEE/NPSS Symposium on Fusion Engineering San Diego, CA, USA, June 01-05, 2009 p1

    [11]

    Brooks A, Reiersen W 2003 20th IEEE/NPSS Symposium on Fusion Engineering San Diego, CA, USA, 14-17 October, 2003 p553

    [12]

    Nührenberg J, Sindoni E, Lotz W, Troyon F, Gori S, Vaclavik J 1994 Proceedings of the Joint Varenna Lausanne International Workshop on Theory of Fusion Plasmas Varenna, Italy, August 22-26, 1994 p3

    [13]

    Garabedian P 1996 Phys. Plasmas 3 2483Google Scholar

    [14]

    Huang J, Nakata M, Xu Y H, Shimizu A, Isobe M, Okamura S, Liu H F, Wang X Q, Zhang X, Liu H, Cheng J, Tang C J 2022 Phys. Plasmas 29 052505Google Scholar

    [15]

    Xu Y H, Liu H F, Xiong G Z, Shimizu A, Kinoshita S, Isobe M, Okamura S, Nakata M, Yin D, Wan Y, Wilfred, Cooper A, Zhu C X, Liu H, Zhang X, Huang J, Wang X Q, Tang C J 2018 27th IAEA Fusion Energy Conference Ahmedabad, India, October 22-27, 2018 p5

    [16]

    Isobe M, Shimizu A, Liu H F, Liu H, Xiong G Z, Yin D P, Ogawa K, Yoshimura Y, Nakata M, Kinoshita S, Okamura S, Tang C J, Xu Y H, the CFQS Team 2019 Plasma Fusion Res. 14 3402074Google Scholar

    [17]

    Wang X Q, Xu Y H, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X 2021 Nucl. Fusion 61 036021Google Scholar

    [18]

    黄捷, 李沫杉, 覃程, 王先驱 2022 71 185202Google Scholar

    Huang J, Li M S, Qin C, Wang X Q 2022 Acta Phys. Sin. 71 185202Google Scholar

    [19]

    苏祥, 王先驱, 符添, 许宇鸿 2023 72 215205Google Scholar

    Su X, Wang X Q, Fu T, Xu Y H 2023 Acta Phys. Sin. 72 215205Google Scholar

    [20]

    Zhu C X, Gates D A, Hudson S R, Liu H F, Xu Y H, Shimizu A, Okamura S 2019 Nucl. Fusion 59 126007Google Scholar

    [21]

    Shimizu A, Liu H F, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Satake S, Suzuki C, Xiong G Z, Xu Y H, Liu H, Zhang X, Huang J, Wang X Q, Tang C J, Yin D P, Wan Y, the CFQS Team 2019 Plasma Fusion Res. 14 3403151Google Scholar

    [22]

    Zhu C X, Hudson S R, Song Y T, Wan Y X 2018 Plasma Phys. Control. Fusion 60 065008Google Scholar

    [23]

    Zhu C X, Hudson S R, Lazerson S A, Song Y T, Wan Y X 2018 Plasma Phys. Control. Fusion 60 054016Google Scholar

    [24]

    Okamura S, Liu H F, Shimizu A, Kinoshita S, Isobe M, Xiong G Z, Xu Y H 2020 J. Plasma Phys. 86 815860402Google Scholar

    [25]

    Shimizu A, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Yoshimura Y, Suzuki C, Osakabe M, Murase T, Nakagawa S, Tanoue H, Xu Y H, Liu H F, Liu H, Huang J, Wang X Q, Cheng J, Xiong G Z, Tang C J, Yin D P, Wan Y 2022 Nucl. Fusion 62 016010Google Scholar

    [26]

    Liu H F, Shimizu A, Xu Y H, Okamura S, Kinoshita S, Isobe M, Li Y B, Xiong G Z, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Yin D P, Wang Y, Murase T, Nakagawa S, Tang C J 2021 Nucl. Fusion 61 016014Google Scholar

    [27]

    Li Y B, Liu H F, Xu Y H, Shimizu A, Kinoshita S, Okamura S, Isobe X, Xiong G Z, Luo Y, Cheng J, Liu H, Wang X Q, Huang J, Zhang X, Yin D P, Wan Y, Tang C J 2020 Plasma Phys. Control. Fusion 62 125004Google Scholar

    [28]

    Liu H F, Zhang J, Xu Y H, Shimizu A, Cooper W A, Okamura S, Isobe M, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Tang C J 2023 Nucl. Fusion 63 026018Google Scholar

    [29]

    Kinoshita S, Shimizu A, Okamura S, Isobe M, Xiong G Z, Liu H F, Xu Y H, the CQFS Team 2019 Plasma Fusion Res. 14 3405097Google Scholar

    [30]

    Liu H F, Shimizu A, Isobe m, Okamura S, Nishimura s, Suzuki C, Xu Y H, Zhang X, Liu B , Huang J, Wang X Q, Liu H, Tang C J, Yin D P, Wan Y, the CFQS Team 2018 Plasma Fusion Res. 13 3405067

    [31]

    Boozer A H 2015 Nucl. Fusion 55 025001Google Scholar

    [32]

    Pedersen T S, Otte M, Lazerson S, Helander P, Bozhenkov S, Biedermann C, Klinger T, Wolf R C, Bosch F S, the Wendelstein 7-X Team 2016 Nat. Commun. 7 13493Google Scholar

    [33]

    Merkel P 1987 Nucl. Fusion 27 867Google Scholar

    [34]

    Zhu C X, Hudson S R, Song Y T, Wan Y X 2018 Nucl. Fusion 58 016008Google Scholar

    [35]

    Drevlak M 1998 Fusion Technol. 33 106Google Scholar

  • [1] Diao Bin, Xu Yan, Huang Xiu-Lin, Wang Yi-Bo. Study of tidal deformabilities of neutron stars using relativistic mean field theory containing δ mesons. Acta Physica Sinica, doi: 10.7498/aps.72.20221599
    [2] Ren Zhen-Zhen, Shen Wei. Numerical simulations of fishbones driven by fast ions in negative triangularity tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20230650
    [3] Su Xiang, Wang Xian-Qu, Fu Tian, Xu Yu-Hong. Suppression mechanism of equilibrium magnetic islands in CFQS low-$\boldsymbol \beta$ plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230546
    [4] Wang Yi-Nong, Chu Peng-Cheng, Jiang Yao-Yao, Pang Xiao-Di, Wang Sheng-Bo, Li Pei-Xin. Proto-magnetars within quasiparticle model. Acta Physica Sinica, doi: 10.7498/aps.71.20220795
    [5] Huang Jie, Li Mo-Shan, Qin Cheng, Wang Xian-Qu. Simulation of ion temperature gradient mode in Chinese First Quasi-axisymmetric Stellarator. Acta Physica Sinica, doi: 10.7498/aps.71.20220729
    [6] Shen Yong, Dong Jia-Qi, He Hong-Da, Ding Xuan-Tong, Shi Zhong-Bing, Ji Xiao-Quan, Li Jia, Han Ming-Kun, Wu Na, Jiang Min, Wang Shuo, Li Ji-Quan, Xu Min, Duan Xu-Ru. Hollow current and reversed magnetic shear configurations in pellet injection discharges on Huanliuqi 2A tokamak. Acta Physica Sinica, doi: 10.7498/aps.70.20210641
    [7] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, doi: 10.7498/aps.68.20190760
    [8] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, doi: 10.7498/aps.68.20190051
    [9] Zhuo Chao, Du Jian-Bang. Shupe effect of fiber sensing coils in multidimensional thermal field. Acta Physica Sinica, doi: 10.7498/aps.67.20170271
    [10] Chen Xing-Le, Lei Yin-Zhao. Analytical solutions to pulsed eddy current field excited by a differently oriented probe coil outside a conducting ferromagnetic pipe. Acta Physica Sinica, doi: 10.7498/aps.63.240301
    [11] Zhong Jian, Fei Jian-Fang, Huang Si-Xun, Huang Xiao-Gang, Cheng Xiao-Ping. Application of the multi-parameters error model in cyclone wind retrieval with scatterometer data. Acta Physica Sinica, doi: 10.7498/aps.62.159302
    [12] Ren Hong-Liang, Ding Pan-Feng, Li Xiao-Yan. Influences of axial position manipulation and misalignments of optical elements on radial trap position manipulation. Acta Physica Sinica, doi: 10.7498/aps.61.210701
    [13] Li Lian-He, Liu Guan-Ting. A screw dislocation interacting with a wedge-shaped crack in one-dimensional hexagonal quasicrystals. Acta Physica Sinica, doi: 10.7498/aps.61.086103
    [14] Li Chuan-Qi, Gu Bin, Mu Li-Li, Zhang Qing-Mei, Chen Mei-Hong, Jiang Yong. An MHD simulation study on the location and shape of magnetopause in equatorial plane. Acta Physica Sinica, doi: 10.7498/aps.61.219402
    [15] Deng Li-Yun, Lan Hong-Mei, Liu Yue. Numerical study on Hall thruster magnetic configuration and its optimization. Acta Physica Sinica, doi: 10.7498/aps.60.025213
    [16] Zha Xue-Jun, Zhu Si-Zheng, Yu Qing-Quan. Equilibrium optimization code opeq and results of applying it to HT-7U. Acta Physica Sinica, doi: 10.7498/aps.52.428
    [17] XU KUN-MING, LU DAO-FANG, YAO XI-XIAN. ZERO FIELD STEPS IN AN ANNULAR SYMMETRIC JOSEPHSON JUNCTION. Acta Physica Sinica, doi: 10.7498/aps.41.97
    [18] AN ZHI-GANG, P. H. Diamond. EFFECTS OF RESISTIVE INTERCHANGE INSTABILITIES ON ENERGY CONFINEMENT IN REVERSED-FIELD PINCH. Acta Physica Sinica, doi: 10.7498/aps.34.314
    [19] SHI BING-REN. EVOLUTION OF TOKAMAK PLASMA DURING FAST HEATING. Acta Physica Sinica, doi: 10.7498/aps.30.1196
    [20] GU CHAO-HAO, HU HE-SHENG. ON SPHERICALLY SYMMETRIC SU2 GAUGE FIELDS AND MONOPOLES. Acta Physica Sinica, doi: 10.7498/aps.26.155
Metrics
  • Abstract views:  419
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2024
  • Accepted Date:  24 December 2024
  • Available Online:  13 January 2025

/

返回文章
返回
Baidu
map