搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变

陈建玲 王辉 贾焕玉 马紫微 李永宏 谭俊

引用本文:
Citation:

超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变

陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊

Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar

Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun
PDF
HTML
导出引用
  • 磁星是指主要由磁场提供辐射能量的一类脉冲星. 部分宁静状态下的磁星X射线有热起源, 对应的温度kT为0.2—0.6 keV (1 eV = 1.602 × 10–19 J), 这比转动供能的脉冲星的典型温度值高很多, 并且可以用黑体谱来拟合. 对磁星的观测和理论研究是当前脉冲星领域一个重要的热点. 结合物态方程, 本文首先计算了在超强磁场下壳层的电导率; 从统计上研究了由于环向磁场衰变, 磁场能释放率与磁星软X射线光度之间的关系. 通过分类和数值拟合, 所得到的新的拟合公式能较好地反映磁星软X射线光度和旋转能损率之间的关系. 研究发现, 对于绝大多数高X射线光度的磁星, 环向磁场欧姆衰变足够提供其观测的软X射线辐射; 对于低X射线光度的暂变磁星, 其软X射线辐射可能来源于旋转能损率、磁层流或粒子星风. 随着对磁星理论和观测研究的深入, 本文模型也会得到进一步的改进, 理论结果将更好地符合磁星的软X射线观测.
    Magnetar is a kind of pulsar powered by magnetic field energy. Part of the X-ray luminosities of magnetars in quiescence have a thermal origin and can be fitted by a blackbody spectrum with temperature kT ~ 0.2-0.6 keV, much higher than the typical values for rotation-powered pulsars. The observation and theoretical study of magnetar are one of hot topics in the field of pulsar research. The activity and emission characteristics of magnetar can be attributed to internal superhigh magnetic field. According to the work of WGW19 and combining with the equation of state, we first calculate the electric conductivity of the crust under a strong magnetic field, and then calculate the toroidal magnetic field decay rate and magnetic energy decay rate by using an eigenvalue equation of toroidal magnetic field decay and considering the effect of general relativity. We reinvestigate the LX-Lrot relationship of 22 magnetars with persistent soft X-ray luminosities and obtain two new fitting formulas on LX-Lrot. We find that for the magnetars with LX < Lrot, the soft X-ray radiations may originate from their rotational energy loss rate, or from magneto-sphere flow and particle wind heating. For the magnetars with LX > Lrot, the Ohmic decay of crustal toroidal magnetic fields can provide their observed isotropic soft X-ray radiation and maintain higher thermal temperature.As for the initial dipole magnetic fields of magnetars, we mainly refer to the rersearch by Viganò et al. (Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 Mon. Not. R. Astron. Soc. 434 123), because they first proposed the up-dated neutron star magneto-thermal evolution model, which can successfully explain the X-ray radiation and cooling mechanism of young pulsars including magnetars and high-magnetic field pulsars. Objectively speaking, as to the decay of toroidal magnetic fields, there are some differences between our theoretical calculations of magnetic energy release rates and the actual situation of magnetic field decay in magnetars, this is because the estimate of initial dipolar magnetic field, true age and the thickness of inner crust of a magnetar are somewhat uncertain. In addition, due to the interstellar-medium’s absorptions to soft X-ray and the uncertainties of distance estimations, the observed soft X-ray luminosities of magnetars have certain deviations. With the continuous improvement of observation, equipment and methods, as well as the in-depth development of theoretical research, our model will be further improved, and the theoretical results are better accordant with the high-energy observation of magnetars.We also discuss other possible anisotropy origins of soft X-ray fluxes of magnetars, such as the formation of magnetic spots and thermoplastic flow wave heating in the polar cap. Although anisotropic heating mechanisms are different from Ohmic decay, all of them require that there exist strong toroidal magnetic fields inside a magnetar. However, the anisotropic heating mechanisms require higher toroidal multipole fields inside a magnetar (such as magnetic octupole field) and are related to complex Hall drift: these may be our research subjects in the future.
      通信作者: 陈建玲, chenjianling62@163.com
    • 基金项目: 国家自然科学基金(批准号: U1631106, U1431125, 11573059, 11847307, U1831102)、山西省高等学校科技创新项目(批准号: 2019L0863)和运城学院博士启动基金(批准号: YQ-2014013)资助的课题.
      Corresponding author: Chen Jian-Ling, chenjianling62@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1631106, U1431125, 11573059, 11847307, U1831102), the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0863), and the Scientific Research Project of Yuncheng University, China (Grant No. YQ-2014013).
    [1]

    Goldreich P, Julian W H 1969 Astrophys. J. 157 869Google Scholar

    [2]

    Goldreich P, Reisenegger A 1992 Astrophys. J. 395 250Google Scholar

    [3]

    Gao Z F, Wang N, Xu Y, Shan H, Li X D 2015 Astron. Nachr. 336 866Google Scholar

    [4]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [5]

    Gao Z F, Shan H, Wang W, Wang N 2017 Astron. Nachr. 338 1066Google Scholar

    [6]

    Gao Z F, Wang N, Shan H 2017 Astron. Nachr. 338 1060Google Scholar

    [7]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [8]

    Mereghetti S, Pons J A, Melatos A 2015 Space Sci. Rev. 191 315Google Scholar

    [9]

    Kaspi V M, Beloborodov A M 2017 Annu. Rev. Astron. Astr. 55 261Google Scholar

    [10]

    Gao Z F, Peng Q H, Wang N, Chou C K 2012 Chin. Phys. B 21 057109Google Scholar

    [11]

    Gao Z F, Peng Q H, Wang N, Yuan J P 2012 Astrophys. Space Sci. 342 55Google Scholar

    [12]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [13]

    Yuan J P, Manchester R N, Wang N, Zhou X, Liu Z Y, Gao Z F 2010 Astrophys. J. Lett. 719 L111Google Scholar

    [14]

    Olausen S A, Kaspi V M 2014 Astrophys. J. Suppl. S. 212 6Google Scholar

    [15]

    Gao Z F, Peng Q H, Wang N, Chou C K, Huo W S 2011 Astrophys. Space Sci. 336 427Google Scholar

    [16]

    Flowers E, Ruderman M A 1977 Astrophys. J. 215 302Google Scholar

    [17]

    Yan W M, Wang N, Manchester R N, Wen Z G, Yuan J P 2018 Mon. Not. R. Astron. Soc. 476 3677

    [18]

    Gourgouliatos K N, Cumming A 2014 Mon. Not. R. Astron. Soc. 438 1618Google Scholar

    [19]

    Gourgouliatos K N, Cumming A 2014 Phys. Rev. Lett. 112 171101Google Scholar

    [20]

    Thompson C, Murray N 2001 Astrophys. J. 560 339Google Scholar

    [21]

    Tiengo A, Esposito P, Mereghetti S, Turolla R, Nobili L, Gastaldello F, Götz D, Israel G, Rea N, Stella L, Zane S, Bignami G 2013 Nature 500 312Google Scholar

    [22]

    Gao Z F, Wang N, Yuan J P, Jiang L, Song D L, 2011 Astrophys. Space Sci. 332 129Google Scholar

    [23]

    Urpin V A, Chanmugam G, Sang Y 1994 Astrophys. J. 433 780Google Scholar

    [24]

    Urpin V A, Muslimov A G 1992 Mon. Not. R. Astron. Soc. 256 261Google Scholar

    [25]

    Muslimov A, Page D 1996 Astrophys. J. 458 347Google Scholar

    [26]

    Mitra D, Konar S, Bhattacharya D 1999 Mon. Not. R. Astron. Soc. 307 459Google Scholar

    [27]

    Geppert U, Urpin V 1994 Mon. Not. R. Astron. Soc. 271 490Google Scholar

    [28]

    Konar S, Bhattacharya D 1997 Mon. Not. R. Astron. Soc. 284 311Google Scholar

    [29]

    Geppert U, Page D, Zannias T 2000 Phys. Rev. D 61 123004Google Scholar

    [30]

    Aguilera D N, Pons J A, Miralles J A 2008 Astron. Astrophys. 486 255Google Scholar

    [31]

    Beloborodov A M, Li X 2016 Astrophys. J. 833 261Google Scholar

    [32]

    Wald R M 1984 General Relativity (Chicago: University of Chicago Press)p 504

    [33]

    Wang H, Gao Z F, Wang N, Jia H Y, Li X D, Zhi Q J 2019 Publ. Astron. Soc. Pac. 131 054201Google Scholar

    [34]

    Esposito P, Rea N, Israel G L 2018 arXiv: 1803.057167

    [35]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, Wang N, Peng Q H 2016 Int. J. Mod. Phys. D 25 1650002

    [36]

    Baym G, Bethe H A, Pethick C J 1971 Nucl. Phys. A. 175 225Google Scholar

    [37]

    Baym G, Pethick C, Sutherland P 1971 Astrophys. J. 170 299Google Scholar

    [38]

    Lalazissis G A, König J, Ring P 1997 Phys. Rev. C. 55 540Google Scholar

    [39]

    Glendenning N K, Moszkowski S A 1991 Phys. Rev. Lett. 67 2414Google Scholar

    [40]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [41]

    Singh D, Saxena G 2012 Int. J. Mod. Phys. E 21 1250076

    [42]

    Demorest P B, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2010 Nature 467 1081Google Scholar

    [43]

    Shapiro S L, Teukolsky S A 1983 Black Holes, White Drarfs, and Neutron Stars (New: YorkJohn Wiley & Sons)

    [44]

    Potekhin A Y, Chabrier G 2013 Astron. Astrophys. 550 16Google Scholar

    [45]

    Sato T, Bamba A, Nakamura R, Ishida M 2010 Pub. Astron. Soc. J. 62 L33Google Scholar

    [46]

    Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 Mon. Not. R. Astron. Soc. 434 123Google Scholar

    [47]

    Torii K, Kinugasa K, Katayama K, Tsunemi H, Yamauchi S 1998 Astrophys. J. 503 843Google Scholar

    [48]

    Rea N, Israel G L, Pons J A, Turolla R, Viganò D, Zane S, Esposito P, Perna R, Papitto A, Terreran G, Tiengo A, Salvetti D, Girart J M, Palau A, Possenti A, Götz D, Mignani R P, Ratti E, Stella L 2013 Astrophys. J. 770 65Google Scholar

    [49]

    Lamb R C, Fox D N, Macomb D J, Prince J A 2002 Astrophys. J. 574 L29Google Scholar

    [50]

    Dib R, Kaspi V M 2014 Astrophys. J. 784 37Google Scholar

    [51]

    Zhu W W, Kaspi V M, Dib R, Woods P M, Gavriil F P, Archibald A M 2008 Astrophys. J. 686 520

    [52]

    Fahlman G G, Gregory P C 1981 Nature 293 202

    [53]

    Rea N, Nichelli E, Israel G L, Perna R, Oosterbroek T, Parmar A N, Turolla R, Campana S, Stella L, Zane S, Angelini L 2007 Mon. Not. R. Astron. Soc. 381 293Google Scholar

    [54]

    An H, Kaspi V M, Archibald R, Cumming A, 2013 Astrophys. J. 763 82Google Scholar

    [55]

    Muno M P, Clark J S, Crowther P A, Dougherty S M, de Grijs R, Law C, McMillan S L W, Morris M R, Negueruela I, Pooley D, Portegies Z S, Yusef-Zadeh F 2006 Astrophys. J. Lett. 636 L41Google Scholar

    [56]

    Dib R, Kaspi V M, Gavriil F P 2009 Astrophys. J. 702 614Google Scholar

    [57]

    Tam C R, Gavriil F P, Dib R, Kaspi V M, Woods P M, Bassa C 2008 Astrophys. J. 677 503Google Scholar

    [58]

    Gaensler B M, McClure-Griffiths N M, Oey M S, Haverkorm M, Dickey J M, Green A J 2005 Astrophys. J. 620 L95Google Scholar

    [59]

    McGarry M B, Gaensler B M, Ransom S M, Kaspi V M, Veljkovik S 2005 Astrophys. J. 627 L137Google Scholar

    [60]

    Vasisht G, Gotthelf E V 1997 Astrophys. J. 486 L129Google Scholar

    [61]

    Camero A, Papitto A, Rea N, Viganò D, Pons J A, Tiengo A, Mereghetti S, Turolla R, Esposito P, Zane S, Israel G L, Götz D 2014 Mon. Not. R. Astron. Soc. 438 3291Google Scholar

    [62]

    Lin L, Kouveliotou C, Baring M G 2011 Astrophys. J. 739 87Google Scholar

    [63]

    Anderson G E, Gaensler B M, Slane P O, Rea N, Kaplan D L, Posselt B, Levin L, Johnston S, Murray S, Brogan C L, Bailes M, Bates S, Benjamin R A, Bhat N D R, Burgay M, Burke-Spolaor S, Chakrabarty D, D'Amico N, Drake J J, Esposito P, Grindlay J E, Hong J, Israel G L, Keith M J, Kramer M, Lazio T J W, Lee J C, Mauerhan J C, Milia S, Possenti A, Stappers B, Steeghs D T H 2012 Astrophys. J. 751 53Google Scholar

    [64]

    Tiengo A, Esposito P, Mereghetti S, Israel G L, Stella L, Turolla R, Zane S, Rea N, Götz D, Feroci M 2009 Mon. Not. R. Astron. Soc. 399 L74Google Scholar

    [65]

    Park S, Hughes J P, Slane P O, Burrows D N, Lee J J, Mori K 2012 Astrophys. J. 748 117Google Scholar

    [66]

    Mereghetti S, Esposito P, Tiengo A, Zane S, Turolla R, Stella L, Israel G L, Götz D, Feroci M 2006 Astrophys. J. 653 1423Google Scholar

    [67]

    Vrba F J, Henden A A, Luginbuhl C B, Guetter H H, Hartmann D H, Klose S 2000 Astrophys. J. 533 L17Google Scholar

    [68]

    Tendulkar S P, Cameron P, Brian K, Shrinivas R 2012 Astrophys. J. 761 76Google Scholar

    [69]

    Woods, Peter M, Kouveliotou C, Finger M H, Göǧüş E, Wilson, C A, Patel S K, Hurley K, Swank J H 2007 Astrophys. J. 654 470Google Scholar

    [70]

    Camilo F, Cognard I, Ransom S M, Halpern J P, Reynolds J, Zimmerman N, Gotthelf E V, Helfand D J, Demorest P, Theureau G, Backer D C 2007 Astrophys. J. 663 497Google Scholar

    [71]

    Dib R, Kaspi V M, Scholz P, Gavriil F P 2012 Astrophys. J. 748 3Google Scholar

    [72]

    Bernardini F, Israel G L, Stella L, Turolla R, Esposito P, Rea N, Zane S, Tiengo A, Campana S, Götz D, Mereghetti S, Romano P 2011 Astron. Astrophys. 529 A19Google Scholar

    [73]

    Rea N, Vigano D, Israel G L, Pons J A, Torres D F 2014 Astrophys. J. Lett. 781 L17Google Scholar

    [74]

    Zhou P, Chen Y, Li X D, Safi-Harb S, Mendez M, Terada Y, Sun W, Ge M Y 2014 Astrophys. J. Lett. 781 L16Google Scholar

    [75]

    Halpern J P, Gotthelf E V 2010 Astrophys. J. 710 941Google Scholar

    [76]

    Esposito P, Burgay M, Possenti A, Turolla R, Zane S, de Luca A, Tiengo A, Israel G, Mattana F, Mereghetti S, Bailes M, Romano P, Götz D, Rea N 2009 Mon. Not. R. Astron. Soc. 399 L44Google Scholar

    [77]

    Corbel S, Chapuis C, Dame T M, Durouchoux P 1999 Astrophys. J. 526 L29Google Scholar

    [78]

    Scholz P, Ng C Y, Livingstone M A, Kaspi V M, Cumming A, Archibald R F 2012 Astrophys. J. 761 66Google Scholar

    [79]

    Scholz P, Kaspi V M, Cumming A 2014 Astrophys. J. 786 62Google Scholar

    [80]

    Kargaltsev O, Kouveliotou C, Pavlov G G, Göǧüş E, Lin L, Wachter S, Griffith R L, Kaneko Y, Younes G 2012 Astrophys. J. 748 26Google Scholar

    [81]

    Leahy D A, Tian W W 2008 Astrophys. J. 135 167

    [82]

    Levin L, Bailes M, Bates S, Bhat N D R, Burgay Marta, Burke-Spolaor S, D'Amico N, Johnston S, Keith M, Kramer M, Milia S, Possenti A, Rea N, Stappers B, van Straten W 2010 Astrophys. J. Lett. 721 L33Google Scholar

    [83]

    Kaspi V M, Archibald R F, Bhalerao V, Dufour F, Gotthelf E V, An H J, Bachetti M, Beloborodov A M, Boggs S E, Christensen F E, Craig W W, Grefenstette B W, Hailey C J, Harrison F A, Kennea J A, Kouveliotou C, Madsen K K, Mori K, Markwardt C B, Stern D, Vogel J K, Zhang W W 2014 Astrophys. J. 786 84Google Scholar

    [84]

    Mori K, Gotthelf E V, Zhang S, An H J, Baganoff F K, Barrière N M, Beloborodov A M, Boggs S E, Christensen F E, Craig, W W, Dufour F, Grefenstette B W, Hailey C J, Harrison F A, Hong J, Kaspi V M, Kennea J A, Madsen K K, Markwardt C B, Nynka M, Stern D, Tomsick J A, Zhang W W 2013 Astrophys. J. Lett. 770 L23Google Scholar

    [85]

    Gotthelf E V, Vasisht G, Boylan-Kolchin M, Torii K 2000 Astrophys. J. 542 L37Google Scholar

    [86]

    Tong H, Xu R X 2013 Res. Astron. Astrophy. 13 1207Google Scholar

    [87]

    Livingstone Margaret A, Ng C Y, Kaspi Victoria A 2011 Astrophys. J. 730 66Google Scholar

    [88]

    Becker W, Truemper J 1997 Astron. Astrophys. 326 682

    [89]

    Shibata S, Watanabe E, Yatsu Y, Enoto T, Bamba A 2016 Astrophys. J. 833 14Google Scholar

    [90]

    Kaplan D L, van Kerkwijk M H 2009 Astrophys. J. 705 798Google Scholar

    [91]

    Haberl F 2007 Astrophys. Space Sci. 308 181Google Scholar

    [92]

    Bogdanov S, Ng C Y, Kaspi V M 2014 Astrophys. J. Lett. 792 L36

    [93]

    Coelho J G, Cáceres D L, de Lima R C R, Malheiro M, Rueda J A, Ruffini R 2017 Astrono. Astrophys. 599 A87Google Scholar

    [94]

    Gonzalaz D, Reisenegger A 2010 Astrono. Astrophys. 522 A16Google Scholar

    [95]

    Kothes R, Dougherty S M 2007 Astron. Astrophys. 468 993Google Scholar

    [96]

    Durant M, van Kerkwijk, Marten H 2006 Astrophys. J. 652 576Google Scholar

    [97]

    Tiengo A, Esposito P, Mereghetti S 2008 Astrophys. J. 680 L133Google Scholar

    [98]

    Kumar H S, Safi-Harb S 2010 Astrophys. J. Lett. 725 L191Google Scholar

    [99]

    Tian W W, Leahy D A 2008 Astrophys. J. 677 292Google Scholar

    [100]

    Gourgouliatos K N, Hollerbach R 2018 Astrophys. J. 852 21

    [101]

    Beloborodov A M 2011 High-Energy Emission from Pulsars and their Systems, Astrophysics and Space Science Proceedings (Berlin: Springer-Verlag Berlin Heidelberg) p299

    [102]

    Beloborodov A M, Levin Y 2014 Astrophys. J. Lett. 794 L24Google Scholar

  • 图 1  在NL3, GM1和TMA模型下中子星的质量和半径的关系

    Fig. 1.  Relationships between mass and radius of neutron stars in NL3, GM1 and TMA model.

    图 2  在TMA模型中磁星的转动惯量I随质量m和半径R的关系

    Fig. 2.  Relationship of moment of inertial I to mass M and radius R for magnetars in TMA models.

    图 3  在无力磁场结构位型下壳层归一化磁场分量${{{B_r}}/{\left( {B\cos \theta } \right)}}$(红线), ${{{B_\theta }}/{\left( {B\sin \theta } \right)}}$(蓝线), 及${{{B_\phi }}/{\left( {B\sin \phi } \right)}}$(黄线)与归一化径向坐标x的关系(选取μ = 1.676, 对应在TMA模型下的M = 1.45M, R = 11.77 km及I = 1.45 × 1045 g·cm2)

    Fig. 3.  Normalized magnetic field components of the crustal confined for the force-free field: ${{{B_r}}/{\left( {B\cos \theta } \right)}}$(red line),${{{B_\theta }}/{\left( {B\sin \theta } \right)}}$(blue line), and ${{{B_\phi }}/{\left( {B\sin \phi } \right)}}$ (yellow line) vs. normalized radial coordinate x. Here we assume the parameter μ = 1.676, corresponding to M = 1.45M, R = 11.77 km and I = 1.45 × 1045 g·cm2 in the TMA model.

    图 4  磁星壳层电导率随密度、温度及不纯净度参数的变化  (a)电导率由电子-声子散射主导; (b)电导率由电子-杂质散射主导; 物态方程一律采用BBP 模型

    Fig. 4.  Relationship of σ to ρ, Τ and Q in the inner crust for magnetar: (a) The conductivity due to electron-phonon scattering; (b) the conductivity due to electron-impurity scattering. The EOS of BBP model is used.

    图 5  磁星磁场欧姆衰变的数值模拟 (a) 在x = 1处极向磁场Bp随时间t的变化; (b) 在x = 1处极向磁场Bt随时间t的变化; (c) 在x = 1处极向磁场衰减率dBp/dt, 随时间t的变化; (d) 在x = 1处环向磁场衰减率dBt/dt, 随时间t的变化; (e) 极化磁场的能量衰减率Lp随时间t的变化; (e) 环向磁场的能量衰减率Lt随时间t的变化; 在(a)−(f)图中红色和蓝颜色的线分别表示$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$$\sigma = 8.75 \times {10^{24}} \;{{\rm{s}}^{{\rm{ - 1}}}}$

    Fig. 5.  Numerical fitting of Ohmic decay for magnetars: (a) The poloidal magnetic field, Bp, as a function of t at x = 1; (b) the toroidal magnetic field, Bt, as a function of t when at x = 1; (c) the poloidal magnetic field decay rate, dBp/dt, as a function of t when at x = 1; (d) the toroidal field decay rate, dBt/dt, as a function of t when at x = 1; (e) the poloidal field energy decay rate, Lp, as a function of t; (f) the toroidal filed energy decay rate, Lt, as a function of t. The red and blue lines in (a)−(f) indicate$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$ and $\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$, respectively.

    图 6  在各向同性加热模型下磁星及相关致密天体$L_{\rm{X}}^\infty $-${L_{{\rm{rot}}}}$的关系图

    Fig. 6.  The $L_{\rm{X}}^\infty $-${L_{{\rm{rot}}}}$ plot for our magnetars and selected objects in isotropic heating models.

    图 7  在各向同性加热模型下拟合得到的磁星的旋转能损率与软X射线光度的关系

    Fig. 7.  Fitting relationship between the soft X-ray luminosity and rotational energy loss rate of magnetars in the isotropic heating model.

    表 1  在NL3, GM1和TMA模型下饱和核物质特性.

    Table 1.  Saturation properties of nuclear matter in the parameterizations for NL3, GM1 and TMA models.

    RMF模型${\rho _0}$/fm–3${E_0}$/MeV${K_0}$/MeVm*K′/MeVJ/MeV${L_0}$/MeV$K_{{\rm{sym}}}^0$/MeV$Q_{{\rm{sym}}}^0$/MeV$K_{\tau ,V}^0$/MeV
    NL30.148–16.24271.530.60–202.9137.40118.53100.88181.31–698.85
    TMA0.147–16.33318.150.635572.1230.6690.1410.75–108.74–367.99
    GM10.153–16.02300.500.70215.6632.5294.0217.9825.01–478.64
    下载: 导出CSV

    表 2  在TMA模型中磁星的m, R, Rcore/R, μI的部分值

    Table 2.  Partial values of m, R, Rcore/R, μ and I for magnetars in TMA model.

    m/MR/kmRcore/R$\mu $I/g·cm2
    1.2011.420.9151.6781.03(1) × 1045
    1.4511.770.9171.6761.47(2) × 1045
    1.7212.050.9191.6751.87(2) × 1045
    2.03*11.250.9141.6792.09(2) × 1045
    注: *在TMA模型下由物态方程给出的最大中子星质量.
    下载: 导出CSV

    表 3  在不同温度和不同纯净度参数下磁星壳层电导率的部分值(采用BBP模型)

    Table 3.  Partial values of electrical conductivity for different temperatures and impurity parameters in the crust of magnetars. Here we use the equation of station (EOS) of BBP model.

    T = 1 × 108 KT = 2 × 108 KT = 3 × 108 K
    $Q = 1$$Q = 5$$Q = 10$$Q = 1$$Q = 5$$Q = 10$$Q = 1$$Q = 5$$Q = 10$
    $\rho $/g·cm–3ZA$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1
    Bp = 5 × 1014 G4.66 × 1011401270.4552.150.7521.691.150.5910.9980.8210.490
    6.61 × 1011401300.6412.580.8652.241.450.7031.180.9820.592
    8.79 × 1011411340.9283.220.9912.971.540.8221.311.200.702
    1.20 × 1012421371.263.721.153.882.210.9532.081.490.787
    1.47 × 1012421401.974.631.234.892.501.042.431.690.867
    2.00 × 1012431442.624.781.426.313.101.223.182.111.03
    2.67 × 1012441492.675.591.687.823.751.414.082.591.29
    3.51 × 1012451543.426.411.8510.304.521.625.203.141.40
    4.54 × 1012461614.207.262.0815.605.241.896.533.781.65
    6.25 × 1012481705.588.562.3717.506.422.188.604.681.96
    8.38 × 1012491816.959.672.6622.207.462.4910.905.552.23
    1.10 × 1013511938.5811.402.9927.908.752.8113.706.602.55
    1.50 × 10135421110.8012.903.4535.6010.403.2417.307.952.95
    1.99 × 10135723213.0014.903.9543.6012.103.7321.209.373.12
    2.58 × 10136025715.2016.904.4651.2013.804.2224.9010.803.88
    3.44 × 10136529617.7019.705.2259.6016.204.9328.9012.504.53
    4.68 × 10137235420.4023.506.2367.7019.105.8732.6014.605.37
    5.96 × 10137842121.7026.507.0869.0021.106.6333.8015.906.02
    8.01 × 10138954822.1031.208.4869.8023.807.8234.7017.206.95
    9.83 × 101310068323.2035.309.7869.8025.408.8336.0017.507.64
    1.30 × 101412099025.5040.3011.8070.8026.5010.1038.2018.108.20
    Bp = 3 × 1015 G4.66 × 1011401270.4632.210.7641.701.180.6031.040.8300.505
    6.61 × 1011401300.6492.670.8732.291.500.7211.361.040.605
    8.79 × 1011411340.9433.301.093.051.710.8421.421.290.723
    1.20 × 1012421371.323.771.193.982.321.012.211.590.854
    1.47 × 1012421401.704.761.365.092.841.192.661.870.937
    2.00 × 1012431442.004.851.656.413.291.303.402.281.12
    2.67 × 1012441492.665.661.817.993.791.434.182.651.31
    3.51 × 1012451543.486.491.9111.304.581.645.203.171.45
    4.54 × 1012461614.207.322.1115.805.311.926.563.811.69
    6.25 × 1012481705.588.642.4417.906.492.248.654.741.99
    8.38 × 1012491816.949.742.6923.107.532.5211.205.612.27
    1.10 × 1013511938.5812.003.0628.808.802.8613.806.652.68
    1.50 × 10135421110.9013.203.5035.7010.803.2917.407.982.97
    1.99 × 10135723213.1015.103.9843.7012.603.7721.309.403.45
    2.58 × 10136025715.3017.004.4851.3014.004.2425.0011.103.90
    3.44 × 10136529617.7019.905.2559.7016.404.9528.9012.704.55
    4.68 × 10137235420.5023.706.2567.7019.305.8932.7014.705.38
    5.96 × 10137842121.8026.707.1069.0021.306.6533.8016.006.03
    8.01 × 10138954822.1031.308.4969.8023.907.8334.7017.306.96
    9.83 × 101310068323.2035.409.7970.3025.508.8536.1017.707.65
    1.30 × 101412099025.5040.3011.8070.8025.5010.1028.2018.108.20
    下载: 导出CSV

    表 4  Bp(0) = 2.0 × 1015 G时Bp, dBp/dt, Lp, Bt, dBt/dt, LtLB的部分值(假定一个中等质量的磁星M = 1.45M, R = 11.77 km, Rc = 0.98 km, 对应着I = 1.47I45$\mu = 1.676$; 表格上和下半部分分别对应着$\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$)

    Table 4.  Partial values of Bp, dBp/dt, Lp, Bt, dBt/dt, Lt and LB when Bp(0) = 2.0 × 1015 G. Here we assume a medium-mass magnetar M = 1.45M, R = 11.77 km, Rc = 0.97 km, corresponding to I = 1.47I45 and $\mu = 1.676$, respectively. The top and bottom parts correspond to $\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$ and $\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$, respectively.

    $\sigma $/s–1t/a${B_{\rm{p}}}$/G${{{\rm{d}}B_{\rm{p}}^{}}/{{\rm{d}}t}}$/G·a–1${L_{\rm{p}}}$/erg·s–1${B_{\rm{t}}}$/G${{{\rm{d}}B_{\rm{t}}^{}}/{{\rm{d}}t}}$/G·a–1${L_{\rm{t}}}$/erg·s–1${L_B}$/erg·s–1
    8.75 × 10245.0 × 1021.995 × 1015–5.92 × 1091.57 × 10341.965 × 1016–5.84 × 10106.28 × 10356.44 × 1035
    2.0 × 1031.981 × 1015–4.65 × 1091.15 × 10341.953 × 1016–4.58 × 10104.59 × 10354.70 × 1035
    2.0 × 1041.954 × 1015–1.37 × 1083.61 × 10331.927 × 1016–1.35 × 10101.44 × 10351.48 × 1035
    2.0 × 1051.844 × 1015–5.91 × 1081.63 × 10331.818 × 1016–5.84 × 10106.52 × 10346.68 × 1034
    2.0 × 1061.373 × 1015–8.61 × 1071.56 × 10321.354 × 1016–8.48 × 1086.24 × 10336.40 × 1033
    2.0 × 1076.865 × 1014–4.36 × 1077.85 × 10316.772 × 1015–4.29 × 1083.14 × 10333.22 × 1033
    2.52 × 10245.0 × 1021.990 × 1015–1.51 × 10103.98 × 10341.96 × 1016–1.49 × 10111.59 × 10361.63 × 1036
    2.0 × 1031.977 × 1015–5.43 × 10101.65 × 10341.95 × 1016–5.36 × 10106.61 × 10356.77 × 1035
    2.0 × 1041.931 × 1015-–1.86 × 1094.74 × 10331.905 × 1016–1.83 × 10101.90 × 10351.94 × 1035
    2.0 × 1051.745 × 1015–7.21 × 1091.69 × 10331.721 × 1016–7.11 × 10106.76 × 10346.93 × 1034
    2.0 × 1068.712 × 1014–3.87 × 1094.46 × 10328.592 × 1015–3.82 × 10101.78 × 10341.83 × 1034
    2.0 × 1072.749 × 1013–1.33 × 1074.82 × 10292.711 × 1014–1.31 × 1081.93 × 10311.98 × 1031
    下载: 导出CSV

    表 5  具有软X射线辐射的22颗磁星的到达时间及其辐射特性

    Table 5.  The persistent timing, ages and emission characteristics for 22 magnetars with observed soft X-ray flux.

    SourceP/s$\dot{ P}$/10–11 s–1${\tau _{\rm{c}}}$/kaAge Est/kaAssocia.Method$L_{\rm{X}}^\infty $/erg·s–1Lrot./erg·s–1Refs.
    SGR 0418+57299.078390.0004(1)36000550SMC磁热模拟9.60 × 10293.1 × 1029[46,48,49]
    1E 2259+5866.979040.04837230.010—20SNR CTB109SNR年龄1.70 × 10347.37 × 1031[5052]
    4U 0142+618.688700.2022(4)68.068.0SMC特征年龄1.05 × 10351.85 × 1032[49,50,53]
    CXOU J16471010.61< 0.04> 420.0> 420Cluster Wdl特征年龄4.50 × 1032< 1.88 × 1031[54,55]
    1E 1048–59376.457872.2504.54.5GSH 288.3–0.5–28特征年龄4.90 × 10344.65 × 1033[5658]
    CXOU J0100438.020391.88(8)6.86.8SMC特征年龄6.50 × 10342.33 × 1033[49,59]
    1RXS J17084911.005021.9455(13)9.09.0MC 13A特征年龄4.20 × 10347.37 × 1032[50,55]
    1E 1841–04511.788984.092(15)4.700.5—1.0SNR Kes73SNR年龄1.84 × 10351.47 × 1033[50,60]
    SGR 0501+45165.762060.594(2)16.004—6SNR HB9SNR年龄8.10 × 10321.85 × 1033[6163]
    SGR 0526–668.054(2)3.8(1)3.4004.8SNR N49SNR年龄1.89 × 10354.22 × 1033[64,65]
    SGR 1900+145.199879.2(4)0.9003.98—7.9Massive star Cluster自行年龄9.00 × 10343.79 × 1034[6668]
    SGR 1806–207.5477349.50000.2400.63—1.0W31, MC13A自行年龄1.63 × 10356.68 × 1034[68,69]
    XTE J1810–1975.540350.777(3)1111W31, MC13A特征年龄4.3 × 10312.93 × 1035[69,70]
    IE 1547–54082.072124.770.690.63SNR G327.24–013SNR年龄1.3 × 10333.11 × 1035[71,72]
    3XXMJ18524611.5587< 0.014> 13005—7SNR Kes 79SNR年龄< 4.0 × 1038< 4.8 × 1038[73,74]
    CXOU J1714053.825356.400.955CTB 37BSNR年龄5.6 × 10346.13 × 1034[45,75]
    SGR 1627–412.594581.9(4)2.25.0SNR G337.0–0.1SNR年龄3.6 × 10335.87 × 1034[76,77]
    Swift J1822–16068.437720.0021(2)63006300HII region特征年龄< 4.0 × 10292.0 × 1030[78,79]
    Swift J1834–08642.48230.796(12)4.960200SNR W41SNR年龄< 8.4 × 10303.1 × 1034[80,81]
    PSR J1622–49504.326(1)1.7(1)4.0≤ 6.0SNR G33.9+0.0SNR年龄4.40 × 10321.18 × 1034[63,82]
    SGR J1745–29003.76361.385(15)4.304.30Galaxy Center特征年龄1.10 × 10321.47 × 1034[83,84]
    PSR J1846–02580.326570.710700.730.9-4.3SNR Kes75SNR年龄1.90 × 10348.10 × 1036[49,85]
    下载: 导出CSV

    表 6  12颗旋转能损率远小于软X射线光度的磁星的辐射特性及磁场能衰变率

    Table 6.  The X-ray emission characteristics and magnetic field energy decay rates of 12 magnetars with rotational energy loss rates less than their soft X-ray luminosities.

    SourceBp(0)/GPL Ind.$T_{BB}^{\infty} $/keVD/kpc$F_{\rm{X}}^\infty $/erg·s–1·cm2$L_{\rm{X}}^\infty $/erg·s–1$L_B^{\rm{a}}$/erg·s–1$\eta _{}^{\rm{a}}$/%$L_B^{\rm{b}}$/erg·s–1$\eta _{}^{\rm{b}}$/%Ref.
    SGR 0418–57293.0 × 10140.302.02.0 × 10–119.60 × 10295.35 × 10320.312.26 × 10320.74[48,49,50]
    1E 2259+5865.0 × 10143.75(4)0.37(1)3.2(2)1.41 × 10–111.70 × 10346.5(1.0) × 103522(6)1.4(3) × 103547(8)[5052]
    CXOU J1647103.0 × 10143.86(22)0.59(6)3.9(7)2.54 × 10–114.50 × 10328.65 × 103393.62 × 103321[50,54,95]
    3XXMJ1852463.0 × 10140.67.11.0 × 10–154.0 × 10333.53 × 10343.11 × 1035[73,74]
    4U 0142+613.0 × 10153.88(1)0.413.6(4)6.97 × 10–111.0 × 10351.14 × 1036154.85 × 103537[50,53,96]
    1E1048–59371.0 × 10153.14(11)0.56(1)9.0(1.7)5.11 × 10–114.90 × 10347.19 × 1035123.08 × 103527[50,57,58]
    CXOU J0100431.0 × 10150.30(2)62.4(1.6)1.40 × 10–116.50 × 10346.82 × 1035163.22 × 103534[50,97]
    IRXS J1708491.0 × 10152.79(1)0.4563.8(5)2.43 × 10–114.20 × 10347.65 × 103593.23 × 103521[50,53,96]
    1E1841–0451.0 × 10151.9(2)0.45(3)8.6(1.1)2.13 × 10–111.84 × 10351.2(2) × 103626(4)5.9(7) × 103546(4)[50,98,99]
    SGR 0526–663.0 × 1015$2.5_{ - 0.12}^{ + 0.11}$0.44(2)53.6(1.2)5.50 × 10–111.89 × 10352.28 × 103687.11 × 103526[50,65]
    SGR1900+143.0 × 10151.9(1)0.47(2)13.0(1.2)4.82 × 10–129.0 × 10342.2(6) × 10367(1)7.8(8) × 103519(2)[50,66]
    SGR1806–203.0 × 10151.6(1)0.55(7)8.8(1.6)1.81 × 10–121.63 × 10353.8(4) × 10367.4(8)8.9(9) × 103526(2)[50,69]
    注: a表示$\sigma = 2.52 \times {10^{24} }\; { {\rm{s} }^{ {\rm{ - 1} } } }$的情况; b表示$\sigma = 8.75 \times {10^{24} } \;{ {\rm{s} }^{ {\rm{ - 1} } } }$的情况; PL Ind. 表示幂率指数.
    下载: 导出CSV
    Baidu
  • [1]

    Goldreich P, Julian W H 1969 Astrophys. J. 157 869Google Scholar

    [2]

    Goldreich P, Reisenegger A 1992 Astrophys. J. 395 250Google Scholar

    [3]

    Gao Z F, Wang N, Xu Y, Shan H, Li X D 2015 Astron. Nachr. 336 866Google Scholar

    [4]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [5]

    Gao Z F, Shan H, Wang W, Wang N 2017 Astron. Nachr. 338 1066Google Scholar

    [6]

    Gao Z F, Wang N, Shan H 2017 Astron. Nachr. 338 1060Google Scholar

    [7]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [8]

    Mereghetti S, Pons J A, Melatos A 2015 Space Sci. Rev. 191 315Google Scholar

    [9]

    Kaspi V M, Beloborodov A M 2017 Annu. Rev. Astron. Astr. 55 261Google Scholar

    [10]

    Gao Z F, Peng Q H, Wang N, Chou C K 2012 Chin. Phys. B 21 057109Google Scholar

    [11]

    Gao Z F, Peng Q H, Wang N, Yuan J P 2012 Astrophys. Space Sci. 342 55Google Scholar

    [12]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [13]

    Yuan J P, Manchester R N, Wang N, Zhou X, Liu Z Y, Gao Z F 2010 Astrophys. J. Lett. 719 L111Google Scholar

    [14]

    Olausen S A, Kaspi V M 2014 Astrophys. J. Suppl. S. 212 6Google Scholar

    [15]

    Gao Z F, Peng Q H, Wang N, Chou C K, Huo W S 2011 Astrophys. Space Sci. 336 427Google Scholar

    [16]

    Flowers E, Ruderman M A 1977 Astrophys. J. 215 302Google Scholar

    [17]

    Yan W M, Wang N, Manchester R N, Wen Z G, Yuan J P 2018 Mon. Not. R. Astron. Soc. 476 3677

    [18]

    Gourgouliatos K N, Cumming A 2014 Mon. Not. R. Astron. Soc. 438 1618Google Scholar

    [19]

    Gourgouliatos K N, Cumming A 2014 Phys. Rev. Lett. 112 171101Google Scholar

    [20]

    Thompson C, Murray N 2001 Astrophys. J. 560 339Google Scholar

    [21]

    Tiengo A, Esposito P, Mereghetti S, Turolla R, Nobili L, Gastaldello F, Götz D, Israel G, Rea N, Stella L, Zane S, Bignami G 2013 Nature 500 312Google Scholar

    [22]

    Gao Z F, Wang N, Yuan J P, Jiang L, Song D L, 2011 Astrophys. Space Sci. 332 129Google Scholar

    [23]

    Urpin V A, Chanmugam G, Sang Y 1994 Astrophys. J. 433 780Google Scholar

    [24]

    Urpin V A, Muslimov A G 1992 Mon. Not. R. Astron. Soc. 256 261Google Scholar

    [25]

    Muslimov A, Page D 1996 Astrophys. J. 458 347Google Scholar

    [26]

    Mitra D, Konar S, Bhattacharya D 1999 Mon. Not. R. Astron. Soc. 307 459Google Scholar

    [27]

    Geppert U, Urpin V 1994 Mon. Not. R. Astron. Soc. 271 490Google Scholar

    [28]

    Konar S, Bhattacharya D 1997 Mon. Not. R. Astron. Soc. 284 311Google Scholar

    [29]

    Geppert U, Page D, Zannias T 2000 Phys. Rev. D 61 123004Google Scholar

    [30]

    Aguilera D N, Pons J A, Miralles J A 2008 Astron. Astrophys. 486 255Google Scholar

    [31]

    Beloborodov A M, Li X 2016 Astrophys. J. 833 261Google Scholar

    [32]

    Wald R M 1984 General Relativity (Chicago: University of Chicago Press)p 504

    [33]

    Wang H, Gao Z F, Wang N, Jia H Y, Li X D, Zhi Q J 2019 Publ. Astron. Soc. Pac. 131 054201Google Scholar

    [34]

    Esposito P, Rea N, Israel G L 2018 arXiv: 1803.057167

    [35]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, Wang N, Peng Q H 2016 Int. J. Mod. Phys. D 25 1650002

    [36]

    Baym G, Bethe H A, Pethick C J 1971 Nucl. Phys. A. 175 225Google Scholar

    [37]

    Baym G, Pethick C, Sutherland P 1971 Astrophys. J. 170 299Google Scholar

    [38]

    Lalazissis G A, König J, Ring P 1997 Phys. Rev. C. 55 540Google Scholar

    [39]

    Glendenning N K, Moszkowski S A 1991 Phys. Rev. Lett. 67 2414Google Scholar

    [40]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [41]

    Singh D, Saxena G 2012 Int. J. Mod. Phys. E 21 1250076

    [42]

    Demorest P B, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2010 Nature 467 1081Google Scholar

    [43]

    Shapiro S L, Teukolsky S A 1983 Black Holes, White Drarfs, and Neutron Stars (New: YorkJohn Wiley & Sons)

    [44]

    Potekhin A Y, Chabrier G 2013 Astron. Astrophys. 550 16Google Scholar

    [45]

    Sato T, Bamba A, Nakamura R, Ishida M 2010 Pub. Astron. Soc. J. 62 L33Google Scholar

    [46]

    Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 Mon. Not. R. Astron. Soc. 434 123Google Scholar

    [47]

    Torii K, Kinugasa K, Katayama K, Tsunemi H, Yamauchi S 1998 Astrophys. J. 503 843Google Scholar

    [48]

    Rea N, Israel G L, Pons J A, Turolla R, Viganò D, Zane S, Esposito P, Perna R, Papitto A, Terreran G, Tiengo A, Salvetti D, Girart J M, Palau A, Possenti A, Götz D, Mignani R P, Ratti E, Stella L 2013 Astrophys. J. 770 65Google Scholar

    [49]

    Lamb R C, Fox D N, Macomb D J, Prince J A 2002 Astrophys. J. 574 L29Google Scholar

    [50]

    Dib R, Kaspi V M 2014 Astrophys. J. 784 37Google Scholar

    [51]

    Zhu W W, Kaspi V M, Dib R, Woods P M, Gavriil F P, Archibald A M 2008 Astrophys. J. 686 520

    [52]

    Fahlman G G, Gregory P C 1981 Nature 293 202

    [53]

    Rea N, Nichelli E, Israel G L, Perna R, Oosterbroek T, Parmar A N, Turolla R, Campana S, Stella L, Zane S, Angelini L 2007 Mon. Not. R. Astron. Soc. 381 293Google Scholar

    [54]

    An H, Kaspi V M, Archibald R, Cumming A, 2013 Astrophys. J. 763 82Google Scholar

    [55]

    Muno M P, Clark J S, Crowther P A, Dougherty S M, de Grijs R, Law C, McMillan S L W, Morris M R, Negueruela I, Pooley D, Portegies Z S, Yusef-Zadeh F 2006 Astrophys. J. Lett. 636 L41Google Scholar

    [56]

    Dib R, Kaspi V M, Gavriil F P 2009 Astrophys. J. 702 614Google Scholar

    [57]

    Tam C R, Gavriil F P, Dib R, Kaspi V M, Woods P M, Bassa C 2008 Astrophys. J. 677 503Google Scholar

    [58]

    Gaensler B M, McClure-Griffiths N M, Oey M S, Haverkorm M, Dickey J M, Green A J 2005 Astrophys. J. 620 L95Google Scholar

    [59]

    McGarry M B, Gaensler B M, Ransom S M, Kaspi V M, Veljkovik S 2005 Astrophys. J. 627 L137Google Scholar

    [60]

    Vasisht G, Gotthelf E V 1997 Astrophys. J. 486 L129Google Scholar

    [61]

    Camero A, Papitto A, Rea N, Viganò D, Pons J A, Tiengo A, Mereghetti S, Turolla R, Esposito P, Zane S, Israel G L, Götz D 2014 Mon. Not. R. Astron. Soc. 438 3291Google Scholar

    [62]

    Lin L, Kouveliotou C, Baring M G 2011 Astrophys. J. 739 87Google Scholar

    [63]

    Anderson G E, Gaensler B M, Slane P O, Rea N, Kaplan D L, Posselt B, Levin L, Johnston S, Murray S, Brogan C L, Bailes M, Bates S, Benjamin R A, Bhat N D R, Burgay M, Burke-Spolaor S, Chakrabarty D, D'Amico N, Drake J J, Esposito P, Grindlay J E, Hong J, Israel G L, Keith M J, Kramer M, Lazio T J W, Lee J C, Mauerhan J C, Milia S, Possenti A, Stappers B, Steeghs D T H 2012 Astrophys. J. 751 53Google Scholar

    [64]

    Tiengo A, Esposito P, Mereghetti S, Israel G L, Stella L, Turolla R, Zane S, Rea N, Götz D, Feroci M 2009 Mon. Not. R. Astron. Soc. 399 L74Google Scholar

    [65]

    Park S, Hughes J P, Slane P O, Burrows D N, Lee J J, Mori K 2012 Astrophys. J. 748 117Google Scholar

    [66]

    Mereghetti S, Esposito P, Tiengo A, Zane S, Turolla R, Stella L, Israel G L, Götz D, Feroci M 2006 Astrophys. J. 653 1423Google Scholar

    [67]

    Vrba F J, Henden A A, Luginbuhl C B, Guetter H H, Hartmann D H, Klose S 2000 Astrophys. J. 533 L17Google Scholar

    [68]

    Tendulkar S P, Cameron P, Brian K, Shrinivas R 2012 Astrophys. J. 761 76Google Scholar

    [69]

    Woods, Peter M, Kouveliotou C, Finger M H, Göǧüş E, Wilson, C A, Patel S K, Hurley K, Swank J H 2007 Astrophys. J. 654 470Google Scholar

    [70]

    Camilo F, Cognard I, Ransom S M, Halpern J P, Reynolds J, Zimmerman N, Gotthelf E V, Helfand D J, Demorest P, Theureau G, Backer D C 2007 Astrophys. J. 663 497Google Scholar

    [71]

    Dib R, Kaspi V M, Scholz P, Gavriil F P 2012 Astrophys. J. 748 3Google Scholar

    [72]

    Bernardini F, Israel G L, Stella L, Turolla R, Esposito P, Rea N, Zane S, Tiengo A, Campana S, Götz D, Mereghetti S, Romano P 2011 Astron. Astrophys. 529 A19Google Scholar

    [73]

    Rea N, Vigano D, Israel G L, Pons J A, Torres D F 2014 Astrophys. J. Lett. 781 L17Google Scholar

    [74]

    Zhou P, Chen Y, Li X D, Safi-Harb S, Mendez M, Terada Y, Sun W, Ge M Y 2014 Astrophys. J. Lett. 781 L16Google Scholar

    [75]

    Halpern J P, Gotthelf E V 2010 Astrophys. J. 710 941Google Scholar

    [76]

    Esposito P, Burgay M, Possenti A, Turolla R, Zane S, de Luca A, Tiengo A, Israel G, Mattana F, Mereghetti S, Bailes M, Romano P, Götz D, Rea N 2009 Mon. Not. R. Astron. Soc. 399 L44Google Scholar

    [77]

    Corbel S, Chapuis C, Dame T M, Durouchoux P 1999 Astrophys. J. 526 L29Google Scholar

    [78]

    Scholz P, Ng C Y, Livingstone M A, Kaspi V M, Cumming A, Archibald R F 2012 Astrophys. J. 761 66Google Scholar

    [79]

    Scholz P, Kaspi V M, Cumming A 2014 Astrophys. J. 786 62Google Scholar

    [80]

    Kargaltsev O, Kouveliotou C, Pavlov G G, Göǧüş E, Lin L, Wachter S, Griffith R L, Kaneko Y, Younes G 2012 Astrophys. J. 748 26Google Scholar

    [81]

    Leahy D A, Tian W W 2008 Astrophys. J. 135 167

    [82]

    Levin L, Bailes M, Bates S, Bhat N D R, Burgay Marta, Burke-Spolaor S, D'Amico N, Johnston S, Keith M, Kramer M, Milia S, Possenti A, Rea N, Stappers B, van Straten W 2010 Astrophys. J. Lett. 721 L33Google Scholar

    [83]

    Kaspi V M, Archibald R F, Bhalerao V, Dufour F, Gotthelf E V, An H J, Bachetti M, Beloborodov A M, Boggs S E, Christensen F E, Craig W W, Grefenstette B W, Hailey C J, Harrison F A, Kennea J A, Kouveliotou C, Madsen K K, Mori K, Markwardt C B, Stern D, Vogel J K, Zhang W W 2014 Astrophys. J. 786 84Google Scholar

    [84]

    Mori K, Gotthelf E V, Zhang S, An H J, Baganoff F K, Barrière N M, Beloborodov A M, Boggs S E, Christensen F E, Craig, W W, Dufour F, Grefenstette B W, Hailey C J, Harrison F A, Hong J, Kaspi V M, Kennea J A, Madsen K K, Markwardt C B, Nynka M, Stern D, Tomsick J A, Zhang W W 2013 Astrophys. J. Lett. 770 L23Google Scholar

    [85]

    Gotthelf E V, Vasisht G, Boylan-Kolchin M, Torii K 2000 Astrophys. J. 542 L37Google Scholar

    [86]

    Tong H, Xu R X 2013 Res. Astron. Astrophy. 13 1207Google Scholar

    [87]

    Livingstone Margaret A, Ng C Y, Kaspi Victoria A 2011 Astrophys. J. 730 66Google Scholar

    [88]

    Becker W, Truemper J 1997 Astron. Astrophys. 326 682

    [89]

    Shibata S, Watanabe E, Yatsu Y, Enoto T, Bamba A 2016 Astrophys. J. 833 14Google Scholar

    [90]

    Kaplan D L, van Kerkwijk M H 2009 Astrophys. J. 705 798Google Scholar

    [91]

    Haberl F 2007 Astrophys. Space Sci. 308 181Google Scholar

    [92]

    Bogdanov S, Ng C Y, Kaspi V M 2014 Astrophys. J. Lett. 792 L36

    [93]

    Coelho J G, Cáceres D L, de Lima R C R, Malheiro M, Rueda J A, Ruffini R 2017 Astrono. Astrophys. 599 A87Google Scholar

    [94]

    Gonzalaz D, Reisenegger A 2010 Astrono. Astrophys. 522 A16Google Scholar

    [95]

    Kothes R, Dougherty S M 2007 Astron. Astrophys. 468 993Google Scholar

    [96]

    Durant M, van Kerkwijk, Marten H 2006 Astrophys. J. 652 576Google Scholar

    [97]

    Tiengo A, Esposito P, Mereghetti S 2008 Astrophys. J. 680 L133Google Scholar

    [98]

    Kumar H S, Safi-Harb S 2010 Astrophys. J. Lett. 725 L191Google Scholar

    [99]

    Tian W W, Leahy D A 2008 Astrophys. J. 677 292Google Scholar

    [100]

    Gourgouliatos K N, Hollerbach R 2018 Astrophys. J. 852 21

    [101]

    Beloborodov A M 2011 High-Energy Emission from Pulsars and their Systems, Astrophysics and Space Science Proceedings (Berlin: Springer-Verlag Berlin Heidelberg) p299

    [102]

    Beloborodov A M, Levin Y 2014 Astrophys. J. Lett. 794 L24Google Scholar

  • [1] 初鹏程, 刘鹤, 杜先斌. 色味锁夸克物质与夸克星.  , 2024, 73(5): 052101. doi: 10.7498/aps.73.20231649
    [2] 董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和. 在超强磁场中修正的相对论电子压强.  , 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [3] 王谊农, 初鹏程, 姜瑶瑶, 庞晓迪, 王圣博, 李培新. 基于准粒子模型的原生磁星研究.  , 2022, 71(22): 222101. doi: 10.7498/aps.71.20220795
    [4] 赵诗艺, 刘承志, 黄修林, 王夷博, 许妍. 强磁场对中子星转动惯量与表面引力红移的影响.  , 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [5] 毕卫红, 陈俊刚, 张胜, 于腾飞, 张燕君, 侯旭涛. 基于分光光度法痕量重金属传感模型和影响因素的研究.  , 2017, 66(7): 074206. doi: 10.7498/aps.66.074206
    [6] 宋冬灵, 明亮, 单昊, 廖天河. 超强磁场下电子朗道能级稳定性及对电子费米能的影响.  , 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [7] 刘忠深, 特古斯, 欧志强, 范文迪, 宋志强, 哈斯朝鲁, 伟伟, 韩睿. 在永磁体强磁场中Mn1.2Fe0.8P1-xSix系列化合物热磁发电研究.  , 2015, 64(4): 047103. doi: 10.7498/aps.64.047103
    [8] 谷卓伟, 罗浩, 张恒第, 赵士操, 唐小松, 仝延锦, 宋振飞, 赵剑衡, 孙承纬. 炸药柱面内爆磁通量压缩实验技术研究.  , 2013, 62(17): 170701. doi: 10.7498/aps.62.170701
    [9] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构.  , 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [10] 冀子武, 郑雨军, 徐现刚. 超强磁场下非掺杂ZnSe/BeTe Ⅱ型量子阱中激子和带电激子的光学特性.  , 2011, 60(4): 047805. doi: 10.7498/aps.60.047805
    [11] 周毅, 吴国松, 代伟, 李洪波, 汪爱英. 椭偏与光度法联用精确测定吸收薄膜的光学常数与厚度.  , 2010, 59(4): 2356-2363. doi: 10.7498/aps.59.2356
    [12] 刘晶晶. 超强磁场对中子星外壳层核素56Fe,56Co,56Ni,56Mn和56Cr电子俘获过程中微子能量损失的影响.  , 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [13] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响.  , 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [14] 张 洁, 刘门全, 魏丙涛, 罗志全. 强磁场中修正URCA过程的中微子产能率.  , 2008, 57(9): 5448-5451. doi: 10.7498/aps.57.5448
    [15] 王维, 张锡娟, 杨翠红, 成海英. 强磁场下Er2Ga5O12的磁晶各向异性.  , 2002, 51(12): 2846-2848. doi: 10.7498/aps.51.2846
    [16] 康俊勇, 户泽慎一郎. 强磁场中晶体生长研究.  , 1996, 45(2): 324-329. doi: 10.7498/aps.45.324
    [17] 陈式刚. 关于强磁场下输运过程的附注.  , 1982, 31(5): 690-692. doi: 10.7498/aps.31.690
    [18] 张裕恒. 脉冲强磁场系统最佳设计的理论.  , 1980, 29(9): 1121-1134. doi: 10.7498/aps.29.1121
    [19] 黄本立, 裴蔼丽, 王俊德. 原子吸收光谱法及火焰光度法测定钠时几种醇类溶剂的影响.  , 1966, 22(7): 733-742. doi: 10.7498/aps.22.733
    [20] G.O.斯屈克尔. 磁调制光电倍加管的超光度计.  , 1958, 14(1): 23-36. doi: 10.7498/aps.14.23
计量
  • 文章访问数:  10974
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-19
  • 修回日期:  2019-07-12
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map