-
复杂结构离子的双电子复合(DR)速率系数在核聚变、极紫外光刻光源等应用研究的等离子体谱模拟中具有重要的价值. 利用基于全相对论组态相互作用理论的FAC程序包, 详细计算了Au34+离子的双电子复合速率系数. 研究分析了激发、辐射通道, 组态相互作用, 级联退激对DR速率系数的影响. 其中, 级联退激对DR速率系数的贡献必须予以考虑. 对双电子复合、辐射复合以及三体复合速率系数做了比较, 在温度大于1 eV范围, 双电子复合都大于辐射复合以及三体复合速率系数, 相应的DR过程对于等离子体离化态分布和能级布居以及光谱模拟都极为重要. 对基态和第一激发态的DR速率系数进行了参数拟合, 拟合值与计算值的偏差小于1.73%. 研究结果将为复杂结构离子双电子复合过程的进一步研究提供参考.Dielectronic recombination (DR) rate coefficients of complex structure ions are very important for spectral simulation in some application researches, such as nuclear fusion and extreme ultraviolet lithography. Theoretical calculations are made for dielectronic recombination rate coefficients of Au34+ ions by using a flexible relativistic atomic code. Influences of excitation and radiation channels, configuration interactions, and decays to autoionizing levels possibly followed by radiative cascades (DAC) on DR rate coefficient are analyzed. The contribution of DAC is evident. The total DR rate coefficient is greater than either the radiation recombination coefficient or three-body recombination coefficient for electron temperature greater than 1 eV. In order to facilitate simple applications, the total DR rate coefficients for the ground state and the first excited state are fitted to an empirical formula. These results should be useful for further analyzing the DR process of complex structures ions.
-
Keywords:
- dielectronic recombination /
- rate coefficient /
- DAC effect /
- Au34+ ions
[1] Badnell N R, Ballance C P, Griffin D C, et al. 2012 Phys. Rev. A 85 052716
[2] Schippers S, Bernhardt D, Muller A, Krantz C, Grieser M, Repnow R, Wolf A, Lestinsky M, Hahn M, Novotn'y O, Savin D W 2011 Phys. Rev. A 83 012711
[3] Schippers S, Bernhardt D, Grieser M, Hahn M, Krantz C, Lestinsky M, Novotn'y O, Repnow R, Savin D W, Wolf A, Muller A 2011 Phys. Scr. 144 014039
[4] Ballance1 C P, Griffin D C, Loch S D, Badnell N R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 045001
[5] Li B W, OSullivan G, Fu Y B, Dong C Z 2012 Phys. Rev. A 85 052706
[6] Li B W, OSullivan G, Fu Y B, Dong C Z 2012 Phys. Rev. A 85 012712
[7] Ballance C P, Loch S D, Pindzola M S, Griffin D C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 205201
[8] Badnell N R, Foster A, Griffin D C, Kilbane D, OMullane M, Summers H P 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135201
[9] Fu Y B, Dong C Z, Su M G, et al. 2011 Phys. Rev. A 83 062708
[10] Gu M F 2008 Can.J Phys. 86 675
[11] Meng F C, Chen C Y, Shi X H, Wang Y S, Zou Y M, Gu M F 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4269
[12] Colombant D, Tonon G F 1973 J Appl. Phys. 44 3524
-
[1] Badnell N R, Ballance C P, Griffin D C, et al. 2012 Phys. Rev. A 85 052716
[2] Schippers S, Bernhardt D, Muller A, Krantz C, Grieser M, Repnow R, Wolf A, Lestinsky M, Hahn M, Novotn'y O, Savin D W 2011 Phys. Rev. A 83 012711
[3] Schippers S, Bernhardt D, Grieser M, Hahn M, Krantz C, Lestinsky M, Novotn'y O, Repnow R, Savin D W, Wolf A, Muller A 2011 Phys. Scr. 144 014039
[4] Ballance1 C P, Griffin D C, Loch S D, Badnell N R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 045001
[5] Li B W, OSullivan G, Fu Y B, Dong C Z 2012 Phys. Rev. A 85 052706
[6] Li B W, OSullivan G, Fu Y B, Dong C Z 2012 Phys. Rev. A 85 012712
[7] Ballance C P, Loch S D, Pindzola M S, Griffin D C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 205201
[8] Badnell N R, Foster A, Griffin D C, Kilbane D, OMullane M, Summers H P 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135201
[9] Fu Y B, Dong C Z, Su M G, et al. 2011 Phys. Rev. A 83 062708
[10] Gu M F 2008 Can.J Phys. 86 675
[11] Meng F C, Chen C Y, Shi X H, Wang Y S, Zou Y M, Gu M F 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4269
[12] Colombant D, Tonon G F 1973 J Appl. Phys. 44 3524
计量
- 文章访问数: 7417
- PDF下载量: 163
- 被引次数: 0