搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能电子穿越玻璃直管和锥管动力学研究

万城亮 李鹏飞 钱立冰 靳博 宋光银 高志民 周利华 张琦 宋张勇 杨治虎 邵剑雄 崔莹 Reinhold Schuch 张红强 陈熙萌

引用本文:
Citation:

低能电子穿越玻璃直管和锥管动力学研究

万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌

Dynamics of slow electrons transmitting through straight glass capillary and tapered glass capillary

Wan Cheng-Liang, Li Peng-Fei, Qian Li-Bing, Jin Bo, Song Guang-Yin, Gao Zhi-Min, Zhou Li-Hua, Zhang Qi, Song Zhang-Yong, Yang Zhi-Hu, Shao Jian-Xiong, Cui Ying, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng
PDF
导出引用
  • 我们通过实验测量1.5 keV电子穿越玻璃直管/锥管的二维角分布的时间演化,研究了低能电子与绝缘玻璃管相互作用的动力学过程.观察到了低能电子穿越玻璃直管和锥管后其强度随时间呈现振荡.穿透的强度出现振荡峰结构,在出现峰的地方,透射的电子最开始出现微弱的圆点,随后微弱的圆点变为较明显的亮点,此后亮点逐渐变大变亮,接着变暗,最后亮斑迅速消失,同时透射电子的角分布中心伴随移动.这种行为显示了低能电子在玻璃管内的充放电呈现振荡行为,当入射电荷累积足够大时,存在一个快速放电的通道,后迅速充电产生阻止电子穿越的电场.对比锥管后的角分布和直管的角分布,我们发现锥管的穿透电子束流密度比直管的大40%.锥管的充放电的时间比直管快,这显示了锥管更容易快速放电,其由于充电建立的电场也更容易影响传输的电子.电子在玻璃直管和锥管的快速充放电的动力学过程显示出电子的传输机制与高电荷态离子有很大不同,其快速充放电过程显示了带负电的电子与绝缘体材料相互作用中的充放电过程与带正电离子的不同.
    It has been found that the transmission rate of the electrons through insulating capillaries as a function of time/incident charge is not the same as that of the ions. The question arises that by using the electrons, if the negative charge patches can be formed to facilitate the transmission of the following electrons, thereby substantiating that the so-called guiding effect works also for electrons. This study aims to observe the time evolutions of the transmission of electrons through a straight glass tube and a tapered glass capillary. This will reveal the details of how and (or) if the negative charge patches can be formed when the electrons transport through them. In this work, a set of MCP/phosphor two-dimensional detection system based on Labview platform is developed to obtain the time evolution of the angular distribution of the transmitted electrons. The pulsed electron beams are obtained to test our detection system. The time evolution of the angular profile of 1.5 keV electrons transmitting through the glass tube/capillary is observed. The transmitted electrons are observed on the detector for a very short time and disappear for a time and then appear again for both the glass tube and tapered glass capillary, leading to an oscillation. The positive charge patches are formed in the insulating glass tube and tapered glass capillary since the secondary electron emission coefficient for the incident energy is larger than 1. It is due to the fact that fast discharge of the deposited charge leads to the increase of the transmission rate, while the fast blocking of the incident electrons due to the deposited positive charge leads to the decrease of the transmission rate. The geometrical configuration of the taper glass capillary tends to make the secondary electrons deposited at the exit part to form the negative patches that facilitate the transmission of electrons. This suggests that if the stable transmission needs to be reached for producing the electron micro-beam by using tapered glass capillaries, the steps must be taken to have the proper grounding and shielding of the glass capillaries and tubes. Our results show a difference in transmission through the insulating capillary between electrons and highly charged ions.
      通信作者: 张红强, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn ; 陈熙萌, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11475075,11104125)资助的课题.
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn ; Chen Xi-Meng, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475075, 11104125).
    [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [2]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712

    [3]

    Schiessl K, Palfinger W, Tókési K, Nowotny H, Lemell C, Burgdórfer J 2005 Phys. Rev. A 72 062902

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [5]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716

    [6]

    Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, Ikeda T, Tanis J A 2013 Phys. Scr. T156 014057

    [7]

    Schiessl K, Tókési K, Solleder B, Lemell C, Burgdórfer J 2009 Phys. Rev. Lett. 102 163201

    [8]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202

    [9]

    Christoph L, Joachim B, Friedrich A 2013 Prog. Surf. Sci. 88 237

    [10]

    Wang W, Chen J, Yu D Y, Wu Y H, Zhang M W, Cai X H 2011 High Power Laser and Particle Beams 23 1065 (in Chinese)[王伟, 陈婧, 于得洋, 武晔虹, 张明武, 蔡晓红2011强激光与粒子束23 1065]

    [11]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2010 Acta Phys. Sin. 59 222 (in Chinese)[陈益峰, 陈熙萌, 娄凤君, 徐进章, 邵剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫2010 59 222]

    [12]

    ALPHA Collaboration, Andresen G B, et al. 2009 Rev. Sci. Instrum. 80 123701

    [13]

    Variale V 2015 Physics Procedia 66 242

  • [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [2]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712

    [3]

    Schiessl K, Palfinger W, Tókési K, Nowotny H, Lemell C, Burgdórfer J 2005 Phys. Rev. A 72 062902

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [5]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716

    [6]

    Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, Ikeda T, Tanis J A 2013 Phys. Scr. T156 014057

    [7]

    Schiessl K, Tókési K, Solleder B, Lemell C, Burgdórfer J 2009 Phys. Rev. Lett. 102 163201

    [8]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202

    [9]

    Christoph L, Joachim B, Friedrich A 2013 Prog. Surf. Sci. 88 237

    [10]

    Wang W, Chen J, Yu D Y, Wu Y H, Zhang M W, Cai X H 2011 High Power Laser and Particle Beams 23 1065 (in Chinese)[王伟, 陈婧, 于得洋, 武晔虹, 张明武, 蔡晓红2011强激光与粒子束23 1065]

    [11]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2010 Acta Phys. Sin. 59 222 (in Chinese)[陈益峰, 陈熙萌, 娄凤君, 徐进章, 邵剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫2010 59 222]

    [12]

    ALPHA Collaboration, Andresen G B, et al. 2009 Rev. Sci. Instrum. 80 123701

    [13]

    Variale V 2015 Physics Procedia 66 242

  • [1] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展.  , 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241290
    [3] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置.  , 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [4] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望.  , 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [5] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [6] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究.  , 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [8] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子穿越玻璃直管时倾角依赖的输运动力学.  , 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [9] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子在玻璃管中的稳定传输.  , 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [10] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , 2021, (): . doi: 10.7498/aps.70.20211663
    [11] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线.  , 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [12] 杨兆锐, 张小安, 徐秋梅, 杨治虎. 高电荷态Krq+与Al表面碰撞发射可见光的研究.  , 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [13] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究.  , 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [14] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响.  , 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [15] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究.  , 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [16] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响.  , 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [17] 于江周, 冯 灏, 孙卫国. 低能电子与氮分子碰撞振动激发动量迁移截面的研究.  , 2008, 57(7): 4143-4147. doi: 10.7498/aps.57.4143
    [18] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额.  , 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究.  , 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
计量
  • 文章访问数:  6134
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-03
  • 修回日期:  2016-07-22
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map