-
The unique properties of heavy-ion beam-driven high-energy density matter (HEDM), characterized by macroscale uniformity, extended volumetric dimension, and material diversity, present novel opportunities for advancing high-energy density physics (HEDP). The High-Intensity Heavy-Ion Accelerator Facility (HIAF), a cornerstone project which is initiated during China’s 12th Five-Year Plan, is currently being accelerated in construction. After completion, it will become a primary platform for experimental research on the HEDP phenomenon induced by intense heavy-ion beams.In this work, a self-developed 1D radiation hydrodynamics code, Aardvark, is used to simulate the interaction dynamics between uranium ion beams (500 MeV/u) and cylindrical targets under HIAF-relevant beam parameters. The results show time-evolution images of specific energy deposition, temperature, pressure, and density of the target material in the radial direction during heavy-ion beam energy loading. By comparing the state-of-matter parameters produced by the ion beam hitting the target at different beam intensities, a noteworthy phenomenon is observed, i.e. a plateau region of temperature and pressure are formed near the axis. This observation indicates that under the action of the heavy-ion beam, a substantially homogeneous region is formed along the axis of the target material, further elucidating the salient characteristics of the heavy-ion beam-driven high energy density material, i.e. its substantial volume and homogeneous state. The state parameters of the target material undergo significant changes in the process, particularly in the later stages, for a beam cluster length of 150 ns and a beam intensity of $ 4 × 10^{11}$ ppp. These changes are characterized by substantial changes in both the density and the pressure of the target material, which are often referred to as shock waves. The generation and propagation rate of these shock waves can be significantly controlled by adjusting the intensity of the ion beam.This study further constructs a systematic database that meticulously records the state parameters of target materials when uranium ion beams interact with various types of targets. The relevant simulation data provide important theoretical guidance for planning heavy-ion beam-driven high-energy density physics experiments at HIAF and crucial theoretical support for in-depth research on the generation, evolution, and properties of high-energy density matter. These advances in calculation position HIAF as a transformative platform for detecting extreme-state substances, with is of direct implications in studying inertial confinement fusion and modeling astrophysical plasma.
-
Keywords:
- intense heavy ion beam /
- high energy density matter /
- fluid dynamics /
- Aardvark program /
- high intensity heavy-ion accelerator facility
-
图 1 HIAF装置布局高能量密度物理实验终端[5]
Figure 1. Schematic of HIAF and a high-energy-density physics experiment terminal is equipped.
图 2 根据HIAF上的铀离子束与铅靶作用的设计方案示意图. (a) 离子束打靶的能量沉积示意图; (b)铀离子束与圆柱型铅靶作用的示意图. 红色虚线区域表示能量沉积最大的位置即布拉格峰
Figure 2. Schematic diagram of the design scheme based on the interaction of the uranium ion beam and the lead target on the HIAF. (a) Schematic diagram of the energy deposition of the ion beam target; (b) Schematic diagram of the interaction of the uranium ion beam with a cylindrical lead target. The red dotted line area indicates the location where the energy is deposited the most, the Bragg peak.
图 4 束团能量为500 MeV/u. (a), (c), (e), (g)是不同束流强度下物态参数的对比, 脉冲长度为100 ns; (b), (d), (f), (h)是脉冲长度为150 ns, 束流强度为4 $ \times 10^{11} $ ppp的物态参数演化
Figure 4. The beam energy is 500 MeV/u. (a), (c), (e), (g) show the comparison of matter state parameters under different beam intensities, with a bunch length of 100 ns. (b), (d), (f), (h) show the evolution of matter state parameters with a bunch length of 150 ns and a beam intensity of 4 × 1011 ppp.
表 1 重离子加速器装置参数对比
Table 1. Comparison of parameters of heavy ion accelerator device.
HIHEX@FAIR HEDP@HIAF Ion $ \mathrm{U}^{28+} $ $ \mathrm{U}^{92+} $ E $ 2 \ \mathrm{AGeV} $ $ 0.8-1 \ \mathrm{AGeV} $ Intensity $ 2 \times 10^{12} \ \mathrm{ppp} $ $ (0.1-2) \times 10^{12} \ \mathrm{ppp} $ Pulse length 50 ns $ 50-100 \ \mathrm{ns} $ $ \Delta \mathrm{E} / \mathrm{E} $ $ \pm 1 {\text{%}} $ $ \pm 0.5{\text{%}} $ Beam spot size $ 1 \ \mathrm{mm} $ $ 0.5-1 \ \mathrm{mm} $ 表 2 Aardvark程序与BIG2程序[18]的物态参数对比.
Table 2. Comparison of the state parameters of the Aardvark program and the BIG2 program.
Code pulse lengths(ns) $ \mathrm{E} (\mathrm{kJ} / \mathrm{g}) $ $ \mathrm{T}_e (\mathrm{K}) $ $ \rho \left(\mathrm{g} / \mathrm{cm}^3\right) $ $ \mathrm{P} (\mathrm{GPa}) $ BIG2 100 14.8 58000.0 10.2 75.0 150 14.0 55000.0 9.3 58.0 Aardvark 100 19.1 55205.0 9.9 84.4 150 18.9 52613.7 8.8 69.4 表 3 随着离子束流强变化时, 不同材料的靶物质在轴心处产生的靶物质状态参数的极值
Table 3. Maximum values of the state parameters of target materials at the axis as ion beam intensity changes.
Target Intensity $ (\mathrm{ppp}) $ $ \rho\left(\mathrm{g} / \mathrm{cm}^3\right) $ $ \mathrm{P}(\mathrm{GPa}) $ $ \mathrm{T_{e}}(\mathrm{K}) $ $ \mathrm{E}(\mathrm{kJ} / \mathrm{g}) $ Pb $ 10^9 $ 11.33 1.48 2561.12 0.17 $ 10^{10} $ 11.18 9.98 13279.05 1.86 $ 10^{11} $ 10.07 79.09 52577.75 17.54 $ 10^{12} $ 7.65 441.22 209187.11 177.03 Al $ 10^9 $ 2.69 0.90 1089.32 0.26 $ 10^{10} $ 2.65 4.02 4952.81 2.57 $ 10^{11} $ 2.26 22.81 24508.74 25.95 $ 10^{12} $ 1.13 93.63 91883.41 264.66 Au $ 10^9 $ 19.21 7.75 1617.67 0.18 $ 10^{10} $ 18.50 49.24 10909.41 1.76 $ 10^{11} $ 16.74 172.76 56315.57 17.54 $ 10^{12} $ 10.27 574.96 199485.15 178.75 LiF $ 10^9 $ 2.63 0.63 696.27 0.23 $ 10^{10} $ 2.59 3.49 4293.67 2.28 $ 10^{11} $ 2.25 20.8 22396.72 23.08 $ 10^{12} $ 1.16 88.5 87265.98 235.73 -
[1] 赵永涛, 张子民, 程锐, HOFFMANN Dieter, 马步博, 王友年, 王瑜玉, 王兴, 邓志刚, 任洁茹, 刘巍, 齐伟, 齐新, 苏有武, 杜应超, 李福利, 李锦钰, 杨杰, 杨建成, 杨磊, 肖国青, 吴栋, 何斌, 宋远红, 张小安, 张世政, 张琳, 张雅, 张艳宁, 陈本正, 陈燕红, 周征, 周贤明, 周维民, 赵红卫, 赵全堂, 赵宗清, 赵晓莹, 胡章虎, 弯峰, 栗建兴, 徐忠锋, 高飞, 唐传祥, 黄文会, 曹树春, 曹磊峰, 盛丽娜, 康炜, 雷瑜, 詹文龙 2020 中国科学: 物理学力学天文学 50 112004
Google Scholar
Zhao Y T, Zhang Z M, Cheng R, Hoffmann D, Ma B B, Wang Y N, Wang Y Y, Wang X, Deng Z G, Ren J R, Liu W, Qi W, Qi X, Su Y W, Du Y C, Li F L, Li J Y, Yang J, Yang J C, Yang L, Xiao G Q, Wu D, He B, Song Y H, Zhang X A, Zhang S Z, Zhang L, Zhang Y, Zhang Y N, Chen B Z, Chen Y H, Zhou Z, Zhou X M, Zhou W M, Zhao H W, Zhao Q T, Zhao Z Q, Zhao X Y, Hu Z H, Wan F, Li J X, Xu Z F, Gao F, Tang C X, Huang W H, Cao S C, Cao L F, Sheng L N, Kang W, Lei Y, Zhan W L 2020 Sci Sin-Phys Mech Astron 50 112004
Google Scholar
[2] 程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学力学天文学 50 112011
Google Scholar
Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci Sin-Phys Mech Astron 50 112011
Google Scholar
[3] 任洁茹, 王佳乐, 陈本正, 徐皓, 张艳宁, 魏文青, 徐星, 马步博, 胡忠敏, 尹帅, 冯建华, 宋莎莎, 张世政, Hoffmann Dieter, 赵永涛 2021 强激光与粒子束 33 012005
Google Scholar
Ren J R, Wang J L, Chen B Z, Xu H, Zhang Y N, Wei W q, Xu X, Ma B B, Hu Z M, Yin S, Feng J H, Song S S, Zhang S Z, Hoffmann D, Zhao Y 2021 High Power Laser and Particle Beams 33 012005
Google Scholar
[4] Ren J R, Zhao Y T, Cheng R, Xu Z F, Xiao G Q 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 406 703
[5] 赵红卫 2024 现代物理知识 36 42
Wei Z H 2024 Mod. Phys. 36 42
[6] Sharkov B Y, Hoffmann D H, Golubev A A, Zhao Y T 2016 Matter Radiat. Extremes 1 28
[7] 赵红卫, 徐瑚珊, 肖国青, 夏佳文, 杨建成, 周小红, 许怒, 何源, 马新文, 杨磊, 陈旭荣, 唐晓东, 赵永涛, 孙志宇, 王志光, 胡正国, 张军辉, 马力祯, 原有进, 詹文龙 2020 中国科学: 物理学力学天文学 50 112011
Zhao H W, Xu H S, Xiao G Q, Xia J W, Yang J C, Zhou X H, Xu N, He Y, Ma X W, Yang L, Chen X R, Tang X D, Zhao Y T, Sun Z Y, Wang Z G, Hu Z G, Zhang J H, Ma L Z, Yuan Y J, Zhan W L 2020 Sci Sin-Phys Mech Astron 50 112011
[8] Hoffmann D H H, Fortov V E, Lomonosov I V, Mintsev V, Tahir N A, Varentsov D, Wieser J 2002 Phys. Plasmas 9 3651
Google Scholar
[9] 廖棱锐, 刘浩, 杨咏乐, 莫崇杰, 陈良文, 张晟, 程锐, 张平, 康炜 2024 计算物理 1
Google Scholar
Liao L R, Liu H, Yang Y L, Mo C J, Chen L W, Zhang S, Cheng R, Zhang P, Kang W 2024 Chin. J. Comput. Phys. 1
Google Scholar
[10] 彭惠民 2008 等离子体中辐射输运和辐射流体力学 (北京: 国防工业出版社)
Peng H M 2008 Radiation transport in plasma and radiation hydrodynamics (Beijing: National Defense Industry Press
[11] Atzeni S, Meyer-ter Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, vol. 125 (Oxford, UK: Oxford University Press
[12] Mihalas D, Weibel-Mihalas B 1999 Foundations of Radiation Hydrodynamics (Mineola, NY: Courier Corporation
[13] 王友年, 马腾才 2020 计算物理 7 235
Wang Y N, Ma T C 2020 Chin. J. Comput. Phys. 7 235
[14] 张智猛, 齐伟, 崔波, 张博, 洪伟, 周维民 2023 计算物理 40 210
Zhang Z M, Qi W, Cui B, Zhang B, Hong W, Zhou W M 2023 Chin. J. Comput. Phys. 40 210
[15] Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud M, Cukier M, Deutsch C, Maynard G 1994 Phys. Rev. E 49 1545
[16] Blöchl P E, Parrinello M 1992 Phys. Rev. B 45 9413
[17] Zhang S, Wang H W, Kang W, Zhang P, He X T 2016 Phys. Plasmas 23 042707
Google Scholar
[18] Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 Matter Radiat. Extremes 3 85
Google Scholar
[19] Fortov V, Goel B S, Munz C D, Ni A L, Shutov A, Vorobiev O Y 1996 Nucl. Sci. Eng. 123 169
Google Scholar
[20] Tahir N A, Hoffmann D H H, Kozyreva A, Shutov A, Maruhn J A, Neuner U, Tauschwitz A, Spiller P, Bock R 2000 Phys. Rev. E 61 1975
Google Scholar
[21] Tahir N A, Lomonosov I V, Borm B, Piriz A R, Shutov A, Neumayer P, Bagnoud V, Piriz S A 2017 ApJS 232 1
Google Scholar
[22] Tahir N A, Shutov A, Lomonosov I V, Piriz A R, Neumayer P, Bagnoud V, Piriz S A 2018 ApJS 238 27
[23] Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Deutsch C 2022 Eur. Phys. J. Plus 137 273
[24] Tahir N A, Shutov A, Lomonosov I V, Piriz A R, Wouchuk G, Deutsch C, Hoffmann D, Fortov V 2006 High Energy Density Phys. 2 21
Google Scholar
[25] Tahir N A, Stöhlker T, Shutov A, Lomonosov I V, Fortov V E, French M, Nettelmann N, Redmer R, Piriz A R, Deutsch C, Zhao Y, Zhang P, Xu H, Xiao G, Zhan W 2010 New J. Phys. 12 073022
Google Scholar
[26] Tahir N A, Deutsch C, Fortov V E, Gryaznov V, Hoffmann D H H, Kulish M, Lomonosov I V, Mintsev V, Ni P, Nikolaev D, Piriz A R, Shilkin N, Spiller P, Shutov A, Temporal M, Ternovoi V, Udrea S, Varentsov D 2005 Phys. Rev. Lett. 95 035001
Google Scholar
[27] Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28 032712
Google Scholar
[28] Tahir N, Lomonosov I, Borm B, Piriz A, Neumayer P, Shutov A, Bagnoud V, Piriz S 2017 Contrib. Plasma Phys. 57 493
Google Scholar
[29] Tahir N A, Adonin A, Deutsch C, Fortov V E, Grandjouan N, Geil B, Grayaznov V, Hoffmann D H H, Kulish M, Lomonosov I V 2005 Nucl. Instrum. Methods Phys. Res. A 544 16
Google Scholar
[30] Tahir N A, Neumayer P, Lomonosov I V, Shutov A, Bagnoud V, Piriz A R, Piriz S A, Deutsch C 2020 Phys. Rev. E 101 023202
Google Scholar
Metrics
- Abstract views: 273
- PDF Downloads: 20
- Cited By: 0