搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探空湿度测量太阳辐射误差修正流体动力学研究

冒晓莉 肖韶荣 刘清惓 李敏 张加宏

引用本文:
Citation:

探空湿度测量太阳辐射误差修正流体动力学研究

冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏

Fluid dynamic analysis on solar heating error of radiosonde humidity measurement

Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong
PDF
导出引用
  • 针对太阳辐射加热导致的误差显著限制了相对湿度测量的准确度,提出一种新颖的相对湿度误差修正方法–基于流体动力学的数值分析法. 在流体-固体耦合传热数值模拟分析中考虑探空湿度传感器的外部热环境情况,施加对流-太阳辐射耦合热边界条件,建立了地面到32 km高空不同气压和温度条件下探空湿度传感器的温度误差分析模型. 结合Goff-Gratch饱和水汽压逼近公式,进而提出了相应的相对湿度误差流体动力学数值分析模型,并且着重研究了太阳辐射方向、传感器尺寸、反射率和衬底材料热导率等物理参数对相对湿度误差的影响. 分析数值仿真结果表明:随着海拨的升高,其与太阳辐射加热引起的相对湿度误差之间存在非线性的单调递增关系;太阳辐射方向对于湿度测量精度的影响显著,当太阳辐射方向垂直于传感器正面时误差最大、传感器顶部时次之、侧面时误差最小;虽然通过减小探空湿度传感器的尺寸、降低衬底材料的热导率以及提高反射率均可以一定程度地降低太阳辐射加热引起的相对湿度误差,但是在低气压高空条件下,太阳辐射加热误差对于湿度准确性的影响仍然十分明显,需加以修正. 与实验结果对比表明,基于流体动力学模拟仿真的相对湿度误差数值分析法为辐射误差修正提供了一种新的途径.
    The error of humidity sensor induced by solar radiation seriously affects the accuracy of the relative humidity measurement. To solve this problem, this paper presents a novel numerical analysis method of correcting the error of relative humidity based on computational fluid dynamics. In view of the external thermal environmental conditions of radiosonde humidity sensors, the convection-solar radiation coupled thermal boundary conditions are adopted in the numerical simulation with analysis method of fluid-solid coupled heat transfer. The temperature error analysis model is first established from the ground to 32 km altitude with different pressures and temperatures. Combined with Goff-Gratch approximation formulas of saturation vapor pressure, the corresponding fluid dynamic numerical analysis model of relative humidity is put forward for error correction. Moreover, the relative humidity errors are reported in the different physical parameters such as the direction of the solar radiation, the reflectivity of sensor, thermal conductivity of the substrate material, the size of sensor, etc. The data analysis shows that the error of relative humidity, caused by solar radiation nonlinearly increases with altitude. The humidity measurement accuracy is affected notably by the direction of solar radiation. Among the errors caused by solar radiation, the error in the direction perpendicular to the front of the sensor is biggest, the error in the direction of the top of the sensor is the next, and the error in the direction of the side of the sensor is smallest. The data analysis also indicates that the solar heating error of the relative humidity can be reduced by reducing the size of the sensor, reducing the thermal conductivity of the substrate material, or improving the reflectivity of sensor. However, the solar heating error can not be neglected under low air pressure at high altitude. A comparison with experimental results shows that the numerical analysis method of the relative humidity error based on fluid dynamics simulation provides a new way to enhance the radiation error correction.
    • 基金项目: 国家自然科学基金(批准号:41275042,61306138,61307113)、江苏省自然科学基金(批准号:BK2012460)和江苏高校优势学科建设工程资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 412475042, 61306138, 61307113), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012460), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Deng Z Y, Min Q W, Zhang Q, Li W H, Liu X S, Wang L X, Lu Q, Li S D, Cao J H, Xu J Q 2010 Plateau Meteor. 29 810 (in Chinese) [邓振镛, 闵庆文, 张强, 李文华, 刘兴士, 王礼先, 卢琦, 李世东, 曹建华, 徐金强 2010 高原气象 29 810]

    [2]

    Elliott William P, Ross Rebecca J 1998 J. Climate 11 2424

    [3]

    Posada R, García-Ortega E, Sánchez J L, López L 2013 Atom. Res. 122 174

    [4]

    Liu Z Z, Li M, Zhong W K, Wong M S 2013 J. Geodrn. 72 86

    [5]

    Li W 2012 Plateau Meteor. 31 568 (in Chinese) [李伟 2012 高原气象 31 568]

    [6]

    Campmany E, Bech J, Rodríguez-Marcos J, Sola Y, Lorente J 2010 Atom. Res. 97 385

    [7]

    Koulali A, Ouazar D, Bock O, Fadil A 2012 Atom. Res. 104–105 273

    [8]

    Berton Roland P H 2008 Atom. Res. 89 12

    [9]

    Yue P, Zhang Q, Zhao W, Wang J S, Wang R Y, Yao Y B, Wang S, Hao X C, Yang F L, Wang R A 2013 Acta Phys. Sin. 62 209201 (in Chinese) [岳平, 张强, 赵文, 王劲松, 王润元, 姚玉壁, 王胜, 郝小翠, 阳伏林, 王若安 2013 62 209201]

    [10]

    Nash J, Oakley T, Vömel H, Li W 2011 WMO Intercomparison of High Quality Radiosonde Systems Yangjiang, China, 12 July-3 August, 2010 p9

    [11]

    Miloshevich Larry M, Paukkunen Ari, V?mel Holger, Oltmans Samuel J 2004 J. Atoms. Ocean. Tech. 21 1305

    [12]

    Du L P, Tian R F, Sun Z N, Liu X Y 2012 Proc. CSEE 32 86 (in Chinese) [杜利鹏, 田瑞峰, 孙中宁, 刘晓一 2012 中国电机工程学报 32 86]

    [13]

    Fleming Rex J 1998 J. Atoms. Ocean. Tech. 15 1511

    [14]

    Peng J W, Lū W H, Xing H Y, Wu X J 2013 Chin. J. Sci. Instrum. 34 153 (in Chinese) [彭基伟, 吕文华, 行鸿彦, 武向娟 2013 仪器仪表学报 34 153]

    [15]

    Kent Elizabeth C, Taylor Peter K 1996 J. Atoms. Ocean. Tech. 13 1317

    [16]

    Guichard F, Parsons D, Miller E 2000 J. Climate 13 3611

    [17]

    Zhang Q, Huang J, Zhang L, Zhang L Y 2013 Acta Phys. Sin. 62 139202 (in Chinese) [张强, 黄菁, 张良, 张立阳 2013 62 139202]

    [18]

    Liu Q Q, Dai W, Yang R K, Zhang J H, Li M 2013 Plateau Meteor. 32 1157 (in Chinese) [刘清惓, 戴伟, 杨荣康, 张加宏, 李敏 2013 高原气象 32 1157]

    [19]

    Li Y G, Fan J P 1990 Humidity Measurement 1 (Beijing: China Meteorological Press) pp466-470 (in Chinese) [李英干, 范金鹏 1990 湿度测量 1 (北京: 气象出版社) 第466-470]

    [20]

    Ciesielski Paul E, Johnson Richard H, Wang J H 2009 J. Atoms. Ocean. Tech. 26 1763

    [21]

    Wang J H, Zhang L Y, Dai A G, Immler F, Sommer M, Vomel H 2013 J. Atoms. Ocean. Tech. 30 197

    [22]

    Liu L, Zhang S L, Ma Y K, Wu G H, Zheng S K, Wang Y Q 2013 Acta Phys. Sin. 62 038802 (in Chinese) [刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青 2013 62 038802]

    [23]

    Jiang Y M, Liu M 2013 Acta Phys. Sin. 62 204501 (in Chinese) [蒋亦民, 刘佑 2013 62 204501]

    [24]

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701]

    [25]

    Tao Y J, Huai X L, Li Z G 2009 Chin. Phys. Lett. 26 074701

    [26]

    Zhao C L, Qin M, Huang Q A 2011 IEEE Sens. J. 11 2986

    [27]

    COESA 1976 Standard Atmosphere (Washington DC: U.S. Government Printing Office) pp53-63

    [28]

    Gao H, Weng N Q, Sun G, Zhang C Y 2012 J. Atmos. Environ. Opt. 7 101 (in Chinese) [高慧, 翁宁泉, 孙刚, 张彩云 2012 大气与环境光学学报 7 101]

    [29]

    Ajil K, Buehler Stefan A, John Viju O, Miloshevich Larry M, Mand M, Holl G 2012 J. Atoms. Ocean. Tech. 29 248

  • [1]

    Deng Z Y, Min Q W, Zhang Q, Li W H, Liu X S, Wang L X, Lu Q, Li S D, Cao J H, Xu J Q 2010 Plateau Meteor. 29 810 (in Chinese) [邓振镛, 闵庆文, 张强, 李文华, 刘兴士, 王礼先, 卢琦, 李世东, 曹建华, 徐金强 2010 高原气象 29 810]

    [2]

    Elliott William P, Ross Rebecca J 1998 J. Climate 11 2424

    [3]

    Posada R, García-Ortega E, Sánchez J L, López L 2013 Atom. Res. 122 174

    [4]

    Liu Z Z, Li M, Zhong W K, Wong M S 2013 J. Geodrn. 72 86

    [5]

    Li W 2012 Plateau Meteor. 31 568 (in Chinese) [李伟 2012 高原气象 31 568]

    [6]

    Campmany E, Bech J, Rodríguez-Marcos J, Sola Y, Lorente J 2010 Atom. Res. 97 385

    [7]

    Koulali A, Ouazar D, Bock O, Fadil A 2012 Atom. Res. 104–105 273

    [8]

    Berton Roland P H 2008 Atom. Res. 89 12

    [9]

    Yue P, Zhang Q, Zhao W, Wang J S, Wang R Y, Yao Y B, Wang S, Hao X C, Yang F L, Wang R A 2013 Acta Phys. Sin. 62 209201 (in Chinese) [岳平, 张强, 赵文, 王劲松, 王润元, 姚玉壁, 王胜, 郝小翠, 阳伏林, 王若安 2013 62 209201]

    [10]

    Nash J, Oakley T, Vömel H, Li W 2011 WMO Intercomparison of High Quality Radiosonde Systems Yangjiang, China, 12 July-3 August, 2010 p9

    [11]

    Miloshevich Larry M, Paukkunen Ari, V?mel Holger, Oltmans Samuel J 2004 J. Atoms. Ocean. Tech. 21 1305

    [12]

    Du L P, Tian R F, Sun Z N, Liu X Y 2012 Proc. CSEE 32 86 (in Chinese) [杜利鹏, 田瑞峰, 孙中宁, 刘晓一 2012 中国电机工程学报 32 86]

    [13]

    Fleming Rex J 1998 J. Atoms. Ocean. Tech. 15 1511

    [14]

    Peng J W, Lū W H, Xing H Y, Wu X J 2013 Chin. J. Sci. Instrum. 34 153 (in Chinese) [彭基伟, 吕文华, 行鸿彦, 武向娟 2013 仪器仪表学报 34 153]

    [15]

    Kent Elizabeth C, Taylor Peter K 1996 J. Atoms. Ocean. Tech. 13 1317

    [16]

    Guichard F, Parsons D, Miller E 2000 J. Climate 13 3611

    [17]

    Zhang Q, Huang J, Zhang L, Zhang L Y 2013 Acta Phys. Sin. 62 139202 (in Chinese) [张强, 黄菁, 张良, 张立阳 2013 62 139202]

    [18]

    Liu Q Q, Dai W, Yang R K, Zhang J H, Li M 2013 Plateau Meteor. 32 1157 (in Chinese) [刘清惓, 戴伟, 杨荣康, 张加宏, 李敏 2013 高原气象 32 1157]

    [19]

    Li Y G, Fan J P 1990 Humidity Measurement 1 (Beijing: China Meteorological Press) pp466-470 (in Chinese) [李英干, 范金鹏 1990 湿度测量 1 (北京: 气象出版社) 第466-470]

    [20]

    Ciesielski Paul E, Johnson Richard H, Wang J H 2009 J. Atoms. Ocean. Tech. 26 1763

    [21]

    Wang J H, Zhang L Y, Dai A G, Immler F, Sommer M, Vomel H 2013 J. Atoms. Ocean. Tech. 30 197

    [22]

    Liu L, Zhang S L, Ma Y K, Wu G H, Zheng S K, Wang Y Q 2013 Acta Phys. Sin. 62 038802 (in Chinese) [刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青 2013 62 038802]

    [23]

    Jiang Y M, Liu M 2013 Acta Phys. Sin. 62 204501 (in Chinese) [蒋亦民, 刘佑 2013 62 204501]

    [24]

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701]

    [25]

    Tao Y J, Huai X L, Li Z G 2009 Chin. Phys. Lett. 26 074701

    [26]

    Zhao C L, Qin M, Huang Q A 2011 IEEE Sens. J. 11 2986

    [27]

    COESA 1976 Standard Atmosphere (Washington DC: U.S. Government Printing Office) pp53-63

    [28]

    Gao H, Weng N Q, Sun G, Zhang C Y 2012 J. Atmos. Environ. Opt. 7 101 (in Chinese) [高慧, 翁宁泉, 孙刚, 张彩云 2012 大气与环境光学学报 7 101]

    [29]

    Ajil K, Buehler Stefan A, John Viju O, Miloshevich Larry M, Mand M, Holl G 2012 J. Atoms. Ocean. Tech. 29 248

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真.  , 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理.  , 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [3] 姚能智, 王浩, 王斌, 王学生. 基于变换流体动力学的文丘里效应旋聚器的设计与非互易特性研究.  , 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [4] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究.  , 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [5] 程君妮. 基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器.  , 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677
    [6] 杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏. 用于气象观测的阵列式温度传感器流体动力学分析与实验研究.  , 2016, 65(9): 094209. doi: 10.7498/aps.65.094209
    [7] 戴伟, 刘清惓, 杨杰, 宿恺峰, 韩上邦, 施佳驰. 探空温度传感器的计算流体动力学分析与实验研究.  , 2016, 65(11): 114701. doi: 10.7498/aps.65.114701
    [8] 陈雷鸣. 干活性物质的动力学理论.  , 2016, 65(18): 186401. doi: 10.7498/aps.65.186401
    [9] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟.  , 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [10] 雷娟棉, 黄灿. 一种改进的光滑粒子流体动力学前处理方法.  , 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [11] 邓芳明, 何怡刚, 佐磊, 李兵, 吴可汗. 基于无源超高频射频识别标签的湿度传感器设计.  , 2014, 63(18): 188402. doi: 10.7498/aps.63.188402
    [12] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型.  , 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [13] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学.  , 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [14] 杜萌, 金宁德, 高忠科, 朱雷, 王振亚. 油水两相流水包油流型多尺度排列熵分析.  , 2012, 61(23): 230507. doi: 10.7498/aps.61.230507
    [15] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析.  , 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [16] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响.  , 2008, 57(3): 1759-1764. doi: 10.7498/aps.57.1759
    [17] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究.  , 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
    [18] 于溪凤, 胡火生, 贺礼端, 蒋 政, 刘 祥, 胡壮麒. 电流体动力学技术制备的Sn-Bi纳米超微粉的微观结构特征.  , 1999, 48(6): 1030-1036. doi: 10.7498/aps.48.1030
    [19] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性.  , 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [20] 谢学纲, 陈式刚, 洪朝生. 超导体流体动力学方程.  , 1990, 39(4): 632-638. doi: 10.7498/aps.39.632
计量
  • 文章访问数:  6586
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-20
  • 修回日期:  2014-04-13
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map