-
In the paper, function projective synchronization of quantum cellular neural network with uncertain system parameters and Lorenz hyperchaotic system is studied. The adaptive controllers are proposed to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function. We also present the relevant proof by applying Lyapunov stability theory. Moreover, linear independence of coefficient vector of uncertain system parameters in quantum cellular neural network is analyzed theoretically, which aims to realize the unknown parameter identification and estimation. Numerical simulations are made to show the effectiveness of the function projective synchronization and parameter estimation.
-
Keywords:
- quantum cellular neural network /
- Lorenz hyperchaotic /
- function projective synchronization /
- nanoelectronic device
[1] [1]Amlani I, Orlov A, Toth G, Bernstein G, Lent C S, Snider G 1999 Science 284 5412
[2] [2]Chua L O, Yang L 1988 IEEE Trans. CAS 35 1257
[3] [3]Tóth G, Lent C S 2001 Phys. Rev. A 63 5231
[4] [4]Cai L, Ma X K, Wang S 2003 Acta Phys. Sin. 52 3002 (in Chinese) [蔡理、马西奎、王森 2003 52 3002]
[5] [5]Fortuna L, Manuela L R, Donata N, Domenico P 2004 IEEE Trans. VLSI 12 1167
[6] [6]Wang S, Cai L, Kang Q 2008 Chin. Phys. B 17 2837
[7] [7]Femat R, Perales G S 1999 Phys. Lett. A 262 50
[8] [8]Krawiecki A, Sukiennicki A 2000 Chaos Solitons Fract. 11 1445
[9] [9]Ge Z M, Yang C H 2008 Chaos Solitons Fract. 35 980
[10] ]Li L, Li J F 2008 Acta Phys. Sin. 57 6093 (in Chinese) [李农、李建芬 2008 57 6093]
[11] ]Luo R Z 2008 Phys. Lett. A 372 3667
[12] ]Lu W L 2007 Phys. Rev. E 75 018201
[13] ]Sun F, Peng H P, Luo Q, Li L X, Yang Y X 2009 Chaos 19 023109
-
[1] [1]Amlani I, Orlov A, Toth G, Bernstein G, Lent C S, Snider G 1999 Science 284 5412
[2] [2]Chua L O, Yang L 1988 IEEE Trans. CAS 35 1257
[3] [3]Tóth G, Lent C S 2001 Phys. Rev. A 63 5231
[4] [4]Cai L, Ma X K, Wang S 2003 Acta Phys. Sin. 52 3002 (in Chinese) [蔡理、马西奎、王森 2003 52 3002]
[5] [5]Fortuna L, Manuela L R, Donata N, Domenico P 2004 IEEE Trans. VLSI 12 1167
[6] [6]Wang S, Cai L, Kang Q 2008 Chin. Phys. B 17 2837
[7] [7]Femat R, Perales G S 1999 Phys. Lett. A 262 50
[8] [8]Krawiecki A, Sukiennicki A 2000 Chaos Solitons Fract. 11 1445
[9] [9]Ge Z M, Yang C H 2008 Chaos Solitons Fract. 35 980
[10] ]Li L, Li J F 2008 Acta Phys. Sin. 57 6093 (in Chinese) [李农、李建芬 2008 57 6093]
[11] ]Luo R Z 2008 Phys. Lett. A 372 3667
[12] ]Lu W L 2007 Phys. Rev. E 75 018201
[13] ]Sun F, Peng H P, Luo Q, Li L X, Yang Y X 2009 Chaos 19 023109
计量
- 文章访问数: 8236
- PDF下载量: 977
- 被引次数: 0