Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge transfer characteristics of Au adsorption on CeO2(111) surface

TIAN Xin SHU Pengli ZHANG Ketong ZENG Dechao YAO Zhifei ZHAO Bohui REN Xiaosen QIN Li ZHU Qiang WEI Jiuyan WEN Huanfei LI Yanjun YASUHIRO Sugawara TANG Jun MA Zongmin LIU Jun

Citation:

Charge transfer characteristics of Au adsorption on CeO2(111) surface

TIAN Xin, SHU Pengli, ZHANG Ketong, ZENG Dechao, YAO Zhifei, ZHAO Bohui, REN Xiaosen, QIN Li, ZHU Qiang, WEI Jiuyan, WEN Huanfei, LI Yanjun, YASUHIRO Sugawara, TANG Jun, MA Zongmin, LIU Jun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Au/CeO2(111), as an important catalyst system, has demonstrated excellent catalytic performances in a variety of fields such as the catalytic oxidation and the water-gas shift reactions. In order to reveal in depth the Au/CeO2(111) catalytic mechanism, especially to understand the interaction of the active components on an atomic scale, in this work, the adsorption properties on the Au/CeO2(111) surface are investigated by calculating the adsorption energy, differential charge density, Bader charge, and the density of states by using density functional theory (DFT+U). First, five adsorption sites of Au/CeO2(111) are identified in the planar region of CeO2(111), and the most stable adsorption configuration is found to be located at the bridging position between surface oxygen atoms (the oxygen-oxygen bridging site), which suggests that Au interacts more closely with the oxygen-oxygen bridging sites. Further, the differential charge density and Bader charge reveal the charge transfer mechanism in the adsorption process. Specifically, the Au atoms are oxidized into Au+, while the Ce4+ ions in the second nearest neighbor of Au are reduced to Ce3+, and the adsorption process is accompanied by a charge transfer phenomenon. Au also exhibits a unique adsorption behavior in the CeO2(111) step-edge region, where a highly under-allocated environment is formed due to the decrease in the coordination number of atoms in the step edge, which enhances the adsorption of Au in a highly under-allocated environment. The adsorption of Au at the step edge is enhanced by the lower coordinated environment due to the reduced coordination number of the atoms at the step edge. By comparing four different types of step structures (Type I, Type II, Type II*, and Type III), it is found that the higher adsorption energy of Au at Type II* site and that at Type III site are both mainly due to the lower coordinated state of Ce atoms at these sites. Charge transfer is also particularly pronounced at the Type III sites. It is also accompanied by electron transferring from Au to Ce4+ ions, making Type III the preferred adsorption site for Au atoms. By constructing a more comprehensive Au/CeO2 model, this study breaks through the previous limitation of focusing only on planar adsorption and reveals the adsorption mechanism of Au/CeO2 at the edge of the step, which provides a new perspective for understanding in depth the catalytic mechanism of Au/CeO2(111).
  • 图 1  (a) CeO2晶格常数随U值的变化; (b) CeO2的带隙随U值的变化

    Figure 1.  (a) The change of lattice constant of CeO2 with U;(b)the change of gaps of CeO2 with U.

    图 4  (a)纯金(Au)的态密度; (b)纯净的CeO2(111) 表面的态密度; (c) Au/CeO2(111) 表面铈顶位的态密度; (d) Au/CeO2(111) 表面氧-氧桥位的态密度, spin-up 和 spin-down 分别代表自旋向上和自旋向下的电子态

    Figure 4.  Presents the DOS for various systems: (a) pure gold (Au); (b) pristine CeO2(111) surface; (c) Au/CeO2(111) surface at the cerium top site; (d) Au/CeO2(111) surface at the oxygen-oxygen bridge site, within each plot, spin-up and spin-down represent the electronic states with spin aligned upwards and downwards.

    图 2  CeO2(111)表面p(2×2)的结构, 以及Au原子的潜在吸附位点 (a)斜视图; (b)俯视图, 红色和白色球体分别代表O和Ce

    Figure 2.  The structure of p(2×2) on CeO2(111) surface and the potential adsorption sites of Au atoms: (a) Side view; (b) top view, the red and white spheres represent O and Ce.

    图 3  Au/CeO2(111)表面上的差分电荷密度 (a)铈顶位(Ce); (b)次氧位(Od); (c)顶氧-铈位(Ou-Ce); (d)氧顶位(Ou); (e)氧-氧桥位(Ou-Ou), 图中紫色部分表示该位置电荷减少, 绿色部分表示电荷的增加

    Figure 3.  Differential charge density on the Au/CeO2(111) surface: (a) Cerium top site (Ce); (b) sub-oxygen site (Od); (c) top oxygen-cerium site (Ou-Ce); (d) oxygen top site (Ou); (e) oxygen-oxygen bridge site (Ou-Ou), the purple regions in the figure indicate a decrease in charge at that location, while the green regions indicate an increase in charge.

    图 5  (a) I型台阶; (b) II型台阶; (c) II*型台阶; (d) III型台阶构建的化学计量CeO2表面; 台阶上边缘的氧(OT)和靠近台阶下边缘的氧(OE)分别用黄色和绿色代表(左:俯视图;右:侧视图)

    Figure 5.  Calculated structures of stoichiometric CeO2 vicinal surfaces built for: (a) Type I steps; (b) Type II steps; (c) Type II* steps; (d) Type III steps; the oxygen at the border of the upper (111) terrace (OT) and the oxygen at the edge close to the lower (111) terrace (OE) are highlighted in yellow and green, respectively (left: top view; right: side view).

    图 6  Au/CeO2(111)台阶上的差分电荷密度(左:俯视图;右:侧视图) (a), (b)Type I; (c), (d) Type II ; (e), (f) Type II*; (g), (h) Type III; 图中紫色部分表示该位置电荷减少, 绿色部分表示电荷的增加

    Figure 6.  Differential charge density on stepped Au/CeO2(111) surfaces (Left: Top view; Right: Side view): (a), (b) Type I step; (c), (d) Type II step; (e), (f) Type II* step; (g), (h) Type III step; the purple regions indicate charge depletion, while the green regions indicate charge accumulation at those locations.

    图 7  CeO2(111)表面上的 (a)Type II*, (b)Type III; (c) Au吸附Type II* OE位点; (d) Au吸附Type III OT位点DOS; spin-up 和 spin-down 分别代表自旋向上和自旋向下的电子态

    Figure 7.  DOS for: (a) Type II* on CeO2(111) surface; (b) Type III on CeO2(111) surface; (c) Au adsorbed at OE site of Type II*; (d) Au adsorbed at OT site of Type III; spin-up and spin-down represent the electronic states with spin directed upwards and downwards, respectively.

    表 1  Au/CeO2(111)表面吸附构型的能量和几何性质, Eads是吸附能, d[Au-O]和d[Au-Ce]是附着原子到表面原子的距离, d[Ce-O]是铈原子到氧原子的距离

    Table 1.  Energy and geometric properties of adsorption configurations on the Au/CeO2(111) surface, Eads is the adsorption energy, d[Au–O] and d[Au–Ce] are distances from the adsorbed atoms to surface atoms, and d[Ce-O] is the distance between the cerium atom and the oxygen atom.

    Site Eads/eV $ d\text{[Au-O]/}\stackrel{. }{\text{A}} $ $ d\text{[Au-Ce]/}\stackrel{. }{\text{A}} $ $ d\text{[Ce-O]/}\stackrel{. }{\text{A}} $
    Ce 0.39 eV 2×3.15
    1×3.10
    1×2.99
    2×4.86
    1×4.91
    3×2.36
    3×2.39
    Od 0.61 eV 1×2.73
    1×2.75
    1×2.79
    1×3.26
    1×3.28
    1×3.29
    1×5.09
    9×2.38
    Ou-Ce 0.77 eV 2.15 1×3.17
    1×3.98
    1×4.01
    1×4.97
    1×2.34
    1×2.35
    3×2.36
    1×2.37
    Ou 0.95 eV 1.97 1×3.68
    1×3.70
    1×4.07
    1×5.63
    1×2.38
    2×2.42
    2×2.45
    1×2.53
    Ou-Ou 1.19 eV 2×2.14 1×2.84
    2×3.31
    1×4.61
    1×2.41
    2×2.42
    1×2.46
    2×2.55
    DownLoad: CSV

    表 2  Au/CeO2(111)台阶吸附构型的能量和几何性质, Eads是吸附能, d[Au-O] 和d[Au-Ce]是附着原子到表面原子的距离, d[Ce-O]是铈原子到氧原子的距离, 及不同配位数O和Ce原子

    Table 2.  Energy and geometric properties of adsorption configurations on stepped Au/CeO2(111) surfaces. Eads is the adsorption energy, d[Au-O] and d[Au-Ce] are the distances from the adsorbed atom to the surface atoms, d[Ce-O] is the distance between the cerium atom and the oxygen atom, along with the coordination numbers of different O and Ce atoms.

    Step type Eads/eV $ d\text{[Au-O]/}\stackrel{. }{\text{A}} $ $ d\text{[Au-Ce]/}\stackrel{. }{\text{A}} $ $ d\text{[Ce-O]/}\stackrel{. }{\text{A}} $ Ocoordination Cecoordination
    OT of TypeⅠ 1.00 1×2.14 1×3.30
    1×3.36
    1×2.31
    1×2.51
    1×2.53
    3 6
    OE of TypeⅠ 0.97 1×2.16 1×3.31
    1×3.29
    1×2.38
    1×2.39
    1×2.47
    3 6
    OT of TypeⅡ 1.25 1×1.95 1×3.59
    2×3.95
    1×2.51
    2×2.56
    3 6
    OE of TypeⅡ 1.32 1×1.94 1×3.82
    1×3.86
    1×5.95
    2×2.42 2 6
    OT of TypeⅡ* 1.36 1×1.97 1×3.40
    1×3.94
    1×3.98
    2×2.46 3 5
    OE of TypeⅡ* 1.74 1×1.93 1×3.79
    1×5.21
    1×5.38
    1×2.21
    1×2.69
    2 5
    OT of Type Ⅲ 2.15 1×1.94 1×3.73
    1×3.94
    1×4.33
    1×2.42
    1×2.47
    2 5
    OE of Type Ⅲ 2.14 1×1.93 1×3.79
    1×4.00
    1×4.79
    1×2.41
    1×2.49
    3 5
    DownLoad: CSV
    Baidu
  • [1]

    Haruta M, Kobayashi T, Sano H, Yamada N 1987 Chem. Lett. 16 405Google Scholar

    [2]

    Li Y J, Wen H, Zhang Q, Adachi Y, Arima E, Kinoshita Y, Nomura H, Ma Z M, Kou L, Tsukuda Y, Naitoh Y, Sugawara Y, Xu R, Cheng Z 2018 Ultramicroscopy 191 51Google Scholar

    [3]

    Zielinski M, Juszczyk W, Kaszkur Z 2022 RSC Adv. 12 5312Google Scholar

    [4]

    Berrichi A, Bailiche Z, Bachir R 2022 Res. Chem. Intermed. 48 4119Google Scholar

    [5]

    Megías-Sayago C, Lolli A, Ivanova S, Albonetti S, Cavani F, Odriozola J A 2019 Catal. Today 333 169Google Scholar

    [6]

    Li Q L, Xie W, Chen G Q, Li Y F, Huang Y J, Chen X D 2015 Nano Res. 8 3075Google Scholar

    [7]

    Liu H P, Cao Z L, Yang S Y, Ren Q Y, Dong Z J, Liu W, Li Z A, Chen X, Luo L L 2024 Nano Res. 17 4986Google Scholar

    [8]

    Kim C, Thompson L 2006 J. Catal. 244 248Google Scholar

    [9]

    Chen Y, Hu P, Lee M H, Wang H 2008 Surf. Sci. 602 1736Google Scholar

    [10]

    Hernández N C, Grau-Crespo R, De Leeuw N H, Sanz J Fdez 2009 Phys. Chem. Chem. Phys. 11 5246Google Scholar

    [11]

    Zhang C, Michaelides A, King D A, Jenkins S J 2010 J. Am. Chem. Soc. 132 2175Google Scholar

    [12]

    Engel J, Francis S, Roldan A 2019 Phys. Chem. Chem. Phys. 21 19011Google Scholar

    [13]

    Shu P L, Tian X, Guo Q, Ren X, Zhao B, Wen H F, Tang J, Li Y J, Yasuhiro S, Ma Z M, Liu J 2024 Phys. Scr. 99 105990Google Scholar

    [14]

    Teng B T, Wu F M, Huang W X, Wen X D, Zhao L H, Luo M F 2012 ChemPhysChem 13 1261Google Scholar

    [15]

    Lu Y, Quardokus R, Lent C S, Justaud F, Lapinte C, Kandel S A 2010 J. Am. Chem. Soc. 132 13519Google Scholar

    [16]

    Lustemberg P G, Pan Y, Shaw B J, Grinter D, Pang C, Thornton G, Pérez R, Ganduglia-Pirovano M V, Nilius N 2016 Phys. ReV. Lett. 116 236101Google Scholar

    [17]

    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003 Science 301 935Google Scholar

    [18]

    Bezkrovnyi O, Bruix A, Blaumeiser D, Piliai L, Schötz S, Bauer T, Khalakhan I, Skála T, Matvija P, Kraszkiewicz P, Pawlyta M, Vorokhta M, Matolínová I, Libuda J, Neyman K M, Kȩpiński L 2022 Chem. Mater. 34 7916Google Scholar

    [19]

    Tibiletti D, Amieiro-Fonseca A, Burch R, Chen Y, Fisher J M, Goguet A, Hardacre C, Hu P, Thompsett D 2005 J. Phys. Chem. B 109 22553Google Scholar

    [20]

    冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基 2023 72 110701Google Scholar

    Feng J, Guo Q, Shu P L, Wen Y, Wen H F, Ma Z M, Li Y J, Liu J 2023 Acta Phys. Sin. 72 110701Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. ReV. Lett. 77 3865Google Scholar

    [22]

    Cococcioni M, De Gironcoli S 2005 Phys. Rev. B 71 035105

    [23]

    Zheng Z Y, Wang D, Zhang Y, Yang F, Gong X Q 2020 Chin. J. Cata. 41 1360Google Scholar

    [24]

    Wilson E L, Grau-Crespo R, Pang C L, Cabailh G, Chen Q, Purton J A, Catlow C R A, Brown W A, De Leeuw N H, Thornton G 2008 J. Phys. Chem. C 112 10918Google Scholar

    [25]

    Ma Z M, Shi Y B, Mu J L, Qu Z, Zhang X M, Li Q, Liu J 2017 Appl. Surf. Sci. 394 472Google Scholar

    [26]

    Owen C J, Jenkins S J 2021 J. Chem. Phys. 154 164703Google Scholar

    [27]

    Chen L J, Tang Y, Cui L, Ouyang C, Shi S 2013 J. of Power Sources 234 69Google Scholar

    [28]

    Kim H Y, Henkelman G 2013 J. Phys. Chem. Lett. 4 216Google Scholar

    [29]

    Kozlov S M, Neyman K M 2014 Phys. Chem. Chem. Phys. 16 7823Google Scholar

    [30]

    Olbrich R, Pieper H H, Oelke R, Wilkens H, Wollschläger J, Zoellner M H, Schroeder T, Reichling M 2014 Appl. Phys. Lett. 104 081910Google Scholar

    [31]

    Barth C, Laffon C, Olbrich R, Ranguis A, Parent Ph, Reichling M 2016 Sci Rep. 6 21165Google Scholar

    [32]

    Shu P L, Guo Q, Tian X, Wei J, Qu Z, Ren X, Wen H F, Tang J, Li Y J, Sugawara Y, Ma Z M, Liu J 2024 Surf. Interfaces 51 104738Google Scholar

    [33]

    Kozlov S M, Viñes F, Nilius N, Shaikhutdinov S, Neyman K M 2012 J. Phys. Chem. Lett. 3 1956Google Scholar

    [34]

    Chu D R, Wang Z Q, Gong X Q 2022 Surf. Sci 722 122096Google Scholar

    [35]

    温焕飞, 菅原康弘, 李艳君 2020 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [36]

    Zhou H, Wang D, Gong X Q 2020 Phys. Chem. Chem. Phys. 22 7738Google Scholar

    [37]

    Zhou C Y, Wang D, Gong X Q 2019 Phys. Chem. Chem. Phys. 21 19987Google Scholar

    [38]

    Piliai L, Matvija P, Dinhová T N, Khalakhan I, Skála T, Doležal Z, Bezkrovnyi O, Kepinski L, Vorokhta M, Matolínová I 2022 ACS Appl. Mater. Interfaces 14 56280Google Scholar

    [39]

    Janssen E M W, Wiegers G A 1978 J. Less-Common Met. 57 P47Google Scholar

  • [1] Zhou Bin, Xiao Shi-Cheng, Wang Yi-Nan, Zhang Xiao-Yu, Zhong Xue, Ma Dan, Dai Ying, Fan Zhi-Qiang, Tang Gui-Ping. First-principles study of VS2 as anode material for Li-ion batteries. Acta Physica Sinica, doi: 10.7498/aps.73.20231681
    [2] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20211631
    [3] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.70.20211631
    [4] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, doi: 10.7498/aps.70.20201939
    [5] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, doi: 10.7498/aps.70.20210268
    [6] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, doi: 10.7498/aps.70.20202043
    [7] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, doi: 10.7498/aps.67.20172220
    [8] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, doi: 10.7498/aps.67.20180759
    [9] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, doi: 10.7498/aps.66.086801
    [10] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo, Liu Wen-Jie. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface. Acta Physica Sinica, doi: 10.7498/aps.66.246801
    [11] Chen Xin, Yan Xiao-Hong, Xiao Yang. Charge distribution of Li-doped few-layer MoS2 and comparison to graphene and BN. Acta Physica Sinica, doi: 10.7498/aps.64.087102
    [12] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, doi: 10.7498/aps.62.077101
    [13] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.3426
    [14] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, doi: 10.7498/aps.59.7880
    [15] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, doi: 10.7498/aps.59.3414
    [16] Wu Xiao-Xia, Wang Qian-En, Wang Fu-He, Zhou Yun-Song. First-principles study on chemisorption of Cl on γ-TiAl(111) surface. Acta Physica Sinica, doi: 10.7498/aps.59.7278
    [17] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, doi: 10.7498/aps.58.1924
    [18] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, doi: 10.7498/aps.57.438
    [19] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, doi: 10.7498/aps.57.7794
    [20] Yu Yang, Xu Li-Fang, Gu Chang-Zhi. Ab initio study of the hydrogen-adsorbed diamond (001) surface. Acta Physica Sinica, doi: 10.7498/aps.53.2710
Metrics
  • Abstract views:  500
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2024
  • Accepted Date:  23 December 2024
  • Available Online:  08 January 2025

/

返回文章
返回
Baidu
map