Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on optical nonreciprocal control of cesium atomic systems at room temperature

ZHANG Huiling XIE Zhongzhu HAO Jiarui FANG Yong

Citation:

Experimental research on optical nonreciprocal control of cesium atomic systems at room temperature

ZHANG Huiling, XIE Zhongzhu, HAO Jiarui, FANG Yong
cstr: 32037.14.aps.74.20241463
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Non-magnetic optical non-reciprocal devices are conducive to constructing optical information processing networks for weak signals without using any external magnetic field. In this work, the non-reciprocal transmission of electromagnetically induced transparency (EIT) in a cesium atomic gas through laser exciting a Λ-type three-level atomic system is observed experimentally.With the help of cesium atoms, which have several advantages over other alkali atoms, such as a rich and readily adjustable energy level structure, bigger ground state hyperfine energy levels, and lower saturation light intensity. An 894.596 nm laser, as probe light, excites energy level from 6S1/2 (F = 4) to 6P3/2 (F = 5), and an 894.594 nm laser, as coupling light, is divided into two beams to excite energy level from 6S1/2 (F = 3) to 6P3/2 (F = 5). The coupling light enters the cesium atomic gas cell in two directions: either collinearly incident in the same direction as the probe light, or in the opposite direction. The probing light that interacts with the coupling light inside the cesium atomic gas and then is detected by the detector avalanche photodiode, and the outcomes are shown and measured on an oscilloscope.The experimentally observed non-reciprocal transmission of EIT proves optical signal isolation in a cesium atomic system. Under the experimental conditions, a series of experiments is conducted on the regulation of the optical non-reciprocal isolation ratio at room temperature by adjusting the power of the probe light and coupling light as well as the detuning. The influence of adjustable parameters on the non-reciprocal isolation ratio is analyzed. The results show that moderate probe light power helps maintain the intensity of EIT in the absorption intensity curve, ensuring a high isolation ratio, which provides a reference for implementing the performance metrics of optical isolators. The observed isolation ratio increases with the increase of coupling power, which is consistent with the theoretical calculation. Within a certain range of coupling light power, a high-performance optical non-reciprocal system is achieved. This trend is exactly in line with that of EIT signal strength variation during co-directional coupling light excitation. A maximum isolation ratio 26 dB is obtained when many parameters are appropriate. The results indicate that in the coherently prepared cesium atom systems, optically tunable parameters can provide an effective means for achieving ideal optical isolation with a high isolation ratio. Compared with existing research on high isolation ratio cavity-free non-reciprocity based on atomic coherence, our proposed experimental scheme can be conducted by using a three-level system at room temperature. With the development of chip-level integrated gas cells, the achieving miniaturization and system integration become easier, which provides experimental support for achieving the miniaturization and integration. This work provides a certain basis for exploring high-performance non-reciprocal devices with high isolation ratios and new perspective for designing the next generation of optical equipment.
      Corresponding author: ZHANG Huiling, huilingzhang2022@126.com
    [1]

    Huang X Y, Lu C C, Liang C, Tao H G, Liu Y C 2021 Light 10 30Google Scholar

    [2]

    Khanikaev A B, Alù A 2015 Nat. Photonics 9 359Google Scholar

    [3]

    Yu Z F, Fan S H 2009 Nat. Photonics 3 91Google Scholar

    [4]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [5]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221Google Scholar

    [6]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [7]

    Staliunas K, Herrero R 2006 Phys. Rev. E 73 016601Google Scholar

    [8]

    Buddhiraju S, Song A, Papadakis G T, Fan S H 2020 Phys. Rev. Lett. 124 257403Google Scholar

    [9]

    Zhou Y F, Qin L G, Huang J H, Wang L L, Tian L J, Wang Z Y, Gong S Q 2022 J. Appl. Phys. 131 194401Google Scholar

    [10]

    Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [11]

    Michael S, Adèle H, Elisa W, Jürgen V, Arno R 2016 Science 354 1577Google Scholar

    [12]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602Google Scholar

    [13]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [14]

    Yu Z F, Fan S H 2010 IEEE J. Sel. Top. Quant. 16 459Google Scholar

    [15]

    Tang J S, Nie W, Tang L, Chen M Y, Su X, Lu Y Q, Nori F, Xia K Y 2022 Phys. Rev. Lett. 128 203602Google Scholar

    [16]

    Feng Z H, Ning T Y, Tian N, Zhao Y F 2023 Opt. Express 31 31108Google Scholar

    [17]

    Liu G G, Gao Z, Wang Q, Xi X, Hu Y H, Wang M R, Liu C Q, Lin X, Deng L J, Yang S Y A, Zhou P H, Yang Y H, Chong Y D, Zhang B L 2022 Nature 609 925Google Scholar

    [18]

    王子尧, 陈福家, 郗翔, 高振, 杨怡豪 2024 73 064201Google Scholar

    Wang Z Y, Chen F J, Chi X, Gao Z, Yang Y H 2024 Acta Phys. Sin. 73 064201Google Scholar

    [19]

    Harris S E 1997 Physics Today 50 36Google Scholar

    [20]

    Zhang Y P, Brown, A W, Xiao M 2007 Phys. Rev. Lett. 99 123603Google Scholar

    [21]

    Che J L, Xu W Q, Wang H, Gao Y H, Wang L, Lan H Y, Wei Z Y, Hu M L 2022 Infrared Phys. Techn. 127 104449Google Scholar

    [22]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [23]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [24]

    Hu Y Q, Zhang S C, Kuang X Y, Qi Y H, Lin G W, Gong S Q, Niu Y P 2020 Opt. Express 28 38710Google Scholar

    [25]

    Fan S F, Qi Y H, Lin G W, Niu Y P, Gong S Q 2020 Opt. Commun. 462 125343Google Scholar

    [26]

    Dong M X, Xia K Y, Zhang W H, Yu Y C, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, Nori F 2021 Sci. Adv. 7 eabe8924Google Scholar

    [27]

    Hu Y Q, Qi Y H, You Y, Zhang S C, Lin G, Li X L, Gong J B, Gong S Q, Niu Y P 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [28]

    Wu H D, Ruan Y P, Li Z X, Dong M X, Cai M, Tang J S, Tang L, Zhang H, Xiao M, Xia K Y 2022 Laser Photonics Rev. 16 2100708Google Scholar

    [29]

    李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东 2022 71 184202Google Scholar

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202Google Scholar

    [30]

    Daniel A S 1998 Cesium D Line Data (University of Oregon: Open Publication License) p19

    [31]

    Daniel A S 2008 Rubidium 85 D Line Data (University of Oregon: Open Publication License) p19

    [32]

    Berman P R, Malinovsky V S 2011 Priciples of Laser Spectroscopy and Quantum Optics (Princeton: Princeton University Press

    [33]

    郭嘉豪 2024 博士学位论文 (上海: 华东理工大学)

    Guo J H 2024 Ph. D. Dissertation (Shanghai: East China University of Science and Technology

  • 图 1  (a) Λ型三能级铯原子示意图; (b)实验光路图(PTS指的是探测光传输信号, APD指的是雪崩光电二极管)

    Figure 1.  (a) Λ-type three energy level scheme of Cs atom; (b) spatial laser path diagram (PTS represents probe transmission signal, APD represents avalanche photodiode).

    图 2  (a)同向耦合光激发时的探测光光谱实验结果图和理论模拟计算图; (b)反向耦合光激发时的探测光光谱实验结果图和理论模拟图

    Figure 2.  (a) Experimental spectrum and theoretical simulation results of probe transmission when the couple field is excited in the same direction; (b) experimental spectrum and theoretical simulation results of probe transmission when the couple field is excited in the opposite direction.

    图 3  (a)同向耦合光作用下, 不同探测光功率下的探测光光谱图; (b)反向耦合光作用下, 不同探测光功率下的探测光光谱图; (c)正反向透射率比随着探测光功率的变化; (d)隔离比随着探测光功率的变化, 图中的误差棒是根据每个数据标准差的重复测得

    Figure 3.  (a) Experimental probe transmission spectra under different probe field power when the couple field is excited in the same direction; (b) experimental probe transmission spectra under different probe field power when the couple field is excited in the opposite direction; (c) variation of forward and backward transmission ratio with the power of probe field; (d) variation of isolation ratio with the power of probe field, where the error bars represent the standard deviations of repeated measurements.

    图 4  (a)隔离比随耦合光功率的变化; (b)隔离比随耦合光失谐的变化; 图中的误差棒是根据每个数据标准差的重复测得

    Figure 4.  (a) Variation of isolation ratio with power of coupling field; (b) variation of isolation ratio with detuning of coupling field; the error bars in panel (a) and (b) represent the standard deviations of repeated measurements.

    Baidu
  • [1]

    Huang X Y, Lu C C, Liang C, Tao H G, Liu Y C 2021 Light 10 30Google Scholar

    [2]

    Khanikaev A B, Alù A 2015 Nat. Photonics 9 359Google Scholar

    [3]

    Yu Z F, Fan S H 2009 Nat. Photonics 3 91Google Scholar

    [4]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [5]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221Google Scholar

    [6]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [7]

    Staliunas K, Herrero R 2006 Phys. Rev. E 73 016601Google Scholar

    [8]

    Buddhiraju S, Song A, Papadakis G T, Fan S H 2020 Phys. Rev. Lett. 124 257403Google Scholar

    [9]

    Zhou Y F, Qin L G, Huang J H, Wang L L, Tian L J, Wang Z Y, Gong S Q 2022 J. Appl. Phys. 131 194401Google Scholar

    [10]

    Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [11]

    Michael S, Adèle H, Elisa W, Jürgen V, Arno R 2016 Science 354 1577Google Scholar

    [12]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602Google Scholar

    [13]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [14]

    Yu Z F, Fan S H 2010 IEEE J. Sel. Top. Quant. 16 459Google Scholar

    [15]

    Tang J S, Nie W, Tang L, Chen M Y, Su X, Lu Y Q, Nori F, Xia K Y 2022 Phys. Rev. Lett. 128 203602Google Scholar

    [16]

    Feng Z H, Ning T Y, Tian N, Zhao Y F 2023 Opt. Express 31 31108Google Scholar

    [17]

    Liu G G, Gao Z, Wang Q, Xi X, Hu Y H, Wang M R, Liu C Q, Lin X, Deng L J, Yang S Y A, Zhou P H, Yang Y H, Chong Y D, Zhang B L 2022 Nature 609 925Google Scholar

    [18]

    王子尧, 陈福家, 郗翔, 高振, 杨怡豪 2024 73 064201Google Scholar

    Wang Z Y, Chen F J, Chi X, Gao Z, Yang Y H 2024 Acta Phys. Sin. 73 064201Google Scholar

    [19]

    Harris S E 1997 Physics Today 50 36Google Scholar

    [20]

    Zhang Y P, Brown, A W, Xiao M 2007 Phys. Rev. Lett. 99 123603Google Scholar

    [21]

    Che J L, Xu W Q, Wang H, Gao Y H, Wang L, Lan H Y, Wei Z Y, Hu M L 2022 Infrared Phys. Techn. 127 104449Google Scholar

    [22]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [23]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [24]

    Hu Y Q, Zhang S C, Kuang X Y, Qi Y H, Lin G W, Gong S Q, Niu Y P 2020 Opt. Express 28 38710Google Scholar

    [25]

    Fan S F, Qi Y H, Lin G W, Niu Y P, Gong S Q 2020 Opt. Commun. 462 125343Google Scholar

    [26]

    Dong M X, Xia K Y, Zhang W H, Yu Y C, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, Nori F 2021 Sci. Adv. 7 eabe8924Google Scholar

    [27]

    Hu Y Q, Qi Y H, You Y, Zhang S C, Lin G, Li X L, Gong J B, Gong S Q, Niu Y P 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [28]

    Wu H D, Ruan Y P, Li Z X, Dong M X, Cai M, Tang J S, Tang L, Zhang H, Xiao M, Xia K Y 2022 Laser Photonics Rev. 16 2100708Google Scholar

    [29]

    李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东 2022 71 184202Google Scholar

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202Google Scholar

    [30]

    Daniel A S 1998 Cesium D Line Data (University of Oregon: Open Publication License) p19

    [31]

    Daniel A S 2008 Rubidium 85 D Line Data (University of Oregon: Open Publication License) p19

    [32]

    Berman P R, Malinovsky V S 2011 Priciples of Laser Spectroscopy and Quantum Optics (Princeton: Princeton University Press

    [33]

    郭嘉豪 2024 博士学位论文 (上海: 华东理工大学)

    Guo J H 2024 Ph. D. Dissertation (Shanghai: East China University of Science and Technology

  • [1] DING Chao, HU Shanshan, DENG Song, SONG Hongtian, ZHANG Ying, WANG Baoshuai, YAN Sheng, XIAO Dongping, ZHANG Huaiqing. Rydberg atom electric field based quantum measurement method and polarization influence analysis. Acta Physica Sinica, 2025, 74(4): 043201. doi: 10.7498/aps.74.20241362
    [2] LI Ruonan, XUE Jingjing, SONG Dan, LI Xin, WANG Dan, YANG Baodong, ZHOU Haitao. Transfer of optical orbital angular momentum under nonreciprocity-reciprocity amplification conversion. Acta Physica Sinica, 2025, 74(4): 044203. doi: 10.7498/aps.74.20241565
    [3] Ge Yun-Ran, Zheng Kang, Ding Chun-Ling, Hao Xiang-Ying, Jin Rui-Bo. Efficient optical nonreciprocity based on four-wave mixing effect in semiconductor quantum well. Acta Physica Sinica, 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [4] Tan Cong, Wang Deng-Long, Dong Yao-Yong, Ding Jian-Wen. Storage and retrieval of solitons in electromagnetically induced transparent system of V-type three-level diamond nitrogen-vacancy color centers. Acta Physica Sinica, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [5] Li Xin, Xie Shu-Yun, Li Lin-Fan, Zhou Hai-Tao, Wang Dan, Yang Bao-Dong. All-optical manipulation of two-way multi-channel based on optical nonreciprocity. Acta Physica Sinica, 2022, 71(18): 184202. doi: 10.7498/aps.71.20220506
    [6] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [7] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [8] Jia Yue1\2, Chen Xiao-Han1\2, Zhang Hao1\2, Zhang Lin-Jie1\2, Xiao Lian-Tuan1\2, Jia Suo-Tang1\2Noise transfer characteristics of Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [9] Ning Ren-Xia, Bao Jie, Jiao Zheng. Wide band electromagnetically induced transparency in graphene metasurface of composite structure. Acta Physica Sinica, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] Tang Hong, Wang Deng-Long, Zhang Wei-Xi, Ding Jian-Wen, Xiao Si-Guo. Controlling of dark or bright soliton type in a cascade-type electromagnetically induced transparency semiconductor quantum well by the coupling longitudinal optical phonons. Acta Physica Sinica, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [11] Yang Guang, Wang Jie, Wang Jun-Min. Determination of the hyperfine coupling constants of the 5D5/2 state of 85Rb atoms by using high signal-to-noise ratio electromagnetically-induced transparency spectra. Acta Physica Sinica, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [12] Huang Wei, Liang Zhen-Tao, Du Yan-Xiong, Yan Hui, Zhu Shi-Liang. Rydberg-atom-based electrometry. Acta Physica Sinica, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [13] Du Ying-Jie, Xie Xiao-Tao, Yang Zhan-Ying, Bai Jin-Tao. Dark soliton in the system of electromagnetically induced transparency. Acta Physica Sinica, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [14] Li Xiao-Li, Shang Ya-Xuan, Sun Jiang. Splitting of electromagnetically induced transparency window and appearing of gain due to radio frequency field. Acta Physica Sinica, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [15] Bian Cheng-Ling, Zhu Jiang, Lu Jia-Wen, Yan Jia-Lu, Chen Li-Qing, Wang Zeng-Bin, Ou Ze-Yu, Zhang Wei-Ping. Experimental research on retrieval efficiency of atomic spin wave based on electromagnetically induced transparency. Acta Physica Sinica, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [16] Lü Chun-Hai, Tan Wen-Ting, Tan Lei. Electromagnetically induced transparency in squeezed vacuum. Acta Physica Sinica, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [17] Li Xiao-Li, Zhang Lian-Shui, Yang Bao-Zhu, Yang Li-Jun. Electromagnetically induced absorption and transparency in a closed lambda-shaped four-level system. Acta Physica Sinica, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [18] Zhang Lian-Shui, Li Xiao-Li, Wang Jian, Yang Li-Jun, Feng Xiao-Min, Li Xiao-Wei, Fu Guang-Sheng. Electromagnetically induced absorption and electromagnetically induced transparency in an optical-radio two-photon coupling configuration. Acta Physica Sinica, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] Yang Li-Jun, Zhang Lian-Shui, Li Xiao-Li, Li Xiao-Wei, Guo Qing-Lin, Han Li, Fu Guang-Sheng. Multi-window frequency-tunable electromagnetically induced transparency. Acta Physica Sinica, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] Wang Li, Song Hai-Zhen. Electromagnetically induced absorption in four-level atomic system. Acta Physica Sinica, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
Metrics
  • Abstract views:  554
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2024
  • Accepted Date:  07 January 2025
  • Available Online:  17 January 2025
  • Published Online:  20 March 2025

/

返回文章
返回
Baidu
map