搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非互易-互易放大转换下光学轨道角动量的转移

李若楠 薛晶晶 宋丹 李鑫 王丹 杨保东 周海涛

引用本文:
Citation:

非互易-互易放大转换下光学轨道角动量的转移

李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛

Transfer of optical orbital angular momentum under nonreciprocity-reciprocity amplification conversion

LI Ruonan, XUE Jingjing, SONG Dan, LI Xin, WANG Dan, YANG Baodong, ZHOU Haitao
PDF
HTML
导出引用
  • 无磁光学非互易在量子通信、量子网络和光信息处理等方面具有重要的应用. 本文通过简并二能级热原子系统, 在单向泵浦场作用下, 考虑热原子的多普勒效应, 实现双路简并四波混频信号的非互易放大. 在此基础上, 再引入一束对向共线传播的泵浦场, 形成了空间复用的多重四波混频过程, 从而实现了双通道四波混频信号的互易放大. 进一步, 利用多组涡旋相位片分别对信号光和泵浦光加载螺旋相位, 产生携带光学轨道角动量的高阶拉盖尔-高斯涡旋光束, 并参与到四波混频过程中, 实现了泵浦光的轨道角动量向增益光场的转移; 同时利用马赫-曾德尔干涉仪, 进一步分析了各路四波混频信号场在非互易-互易放大转换下, 光学轨道角动量的守恒特性. 该结论为实现基于复杂结构光的光学非互易器件的应用研究提供了重要的参考.
    Magnet-free optical nonreciprocity has significant applications in quantum communication, quantum networks, and optical information processing. In this research, considering a degenerate two-level thermal atomic system with the Doppler effect of thermal atoms, the nonreciprocal amplification (NRA) of dual-path degenerate four-wave mixing (FWM) signals is achieved under the action of a co-propagating pumping field. On this basis, spatially multiplexed multiple FWM processes are formed by introducing another counter-propagating pumping field, thereby achieving the reciprocal amplification (RA) of the dual-channel FWM signals. Furthermore, by using multiple sets of spiral phase plates to load spiral phases on the signal light and the pumping light respectively, higher-order Laguerre-Gaussian vortex beams carrying different optical orbital angular momentum (OAM) are generated and participate in the FWM process, achieving the transfer of the OAM of the pumping light to the amplified FWM fields. Simultaneously, using the Mach-Zehnder interferometer, the conservation characteristics of the OAM of each FWM signal in the NRA-RA conversion are further analyzed. Furthermore, experimental results demonstrate that in the multiple FWM process induced by a pair of counter-propagating pump fields, the OAM of the amplified FWM signal in each channel varies with that of the pump field. However, the overall process maintains the OAM conservation. This study provides a feasible solution for expanding the channel capacity using OAM based on NRA-RA system, showing that the OAM has potential application prospects in achieving high-capacity optical communication and multi-channel signal processing.
  • 图 1  (a)实验能级示意图; (b)实验装置示意图; (c)泵浦光与信号光在Cs原子气室中相互作用角度示意图

    Fig. 1.  (a) Diagram of atom energy levels for the atoms; (b) diagram of experimental setup; (c) diagram of the interaction angle between pump and signal lights in the Cs atom cell.

    图 2  不同泵浦光和信号光条件下, 四路探测器(PD1—PD4)测量的归一化透射谱T随单光子失谐Δ的变化趋势 (a) P1-S1; (b) P2-S1; (c) P1-P2-S1; (d) P1-S2; (e) P2-S2; (f) P1-P2-S2. 主要实验参量: $ {P_{{{\mathrm{P}}_1}}} = {P_{{{\mathrm{P}}_2}}} = 10\;{\text{mW}} $, $ {P_{{{\mathrm{S}}_1}}} = {P_{{{\mathrm{S}}_2}}} = 5\;{\text{μW}} $, $ {T_{\text{c}}} = 100 $ ℃

    Fig. 2.  Normalized transmission spectra T detected by PD1–PD4 versus single detuning Δ under the different pump and signal lights: (a) P1-S1; (b) P2-S1; (c) P1-P2-S1; (d) P1-S2; (e) P2- S2; (f) P1-P2-S2. The main experimental parameters are: $ {P_{{{\mathrm{P}}_1}}} = {P_{{{\mathrm{P}}_2}}} = 10\;{\text{mW}} $, $ {P_{{{\mathrm{S}}_1}}} = {P_{{{\mathrm{S}}_2}}} = 5\;{\text{μW}} $, $ {T_{\text{c}}} = 100 $ ℃.

    图 3  不同泵浦光和信号光条件下的FWM过程 (a1) P1-S1; (b1) P2-S2; (c1) P1-P2-S1; (d1) P1-P2-S2. (a2)—(d2) 对应图(a1)—(d1)条件下FWM过程的相位匹配关系

    Fig. 3.  The FWM processes under the different pump and signal lights: (a1) P1-S1; (b1) P2-S2; (c1) P1-P2-S1; (d1) P1-P2-S2. (a2)–(d2) Phase matching corresponding to the FWM of panels (a1)–(d1).

    图 4  (a1)—(d1)和(a2)—(d2)分别对应图3(a1)—(d1)的FWM过程中, 从前向和后向探测方向观测的光斑图样. 单光子失谐为Δ ≈ –260 MHz

    Fig. 4.  (a1)–(d1) and (a2)–(d2) Spatial patterns of FWM beams generated in the forward and backward directions corresponding to the FWM processes in Figs. 3 (a1)–(d1). The single photon detuning is Δ ≈ –260 MHz.

    图 5  (a1)—(c1)在NRA条件下, 信号光和泵浦光携带不同OAM时CCD观测的光斑图样 (a1) ${l_{{{\text{S}}_1}}} = - 1$, ${l_{{{\text{P}}_1}}} = 0$; (b1) ${l_{{{\text{S}}_1}}} = 0$, ${l_{{{\text{P}}_1}}} = - 1$; (c1) ${l_{{{\text{S}}_2}}} = 0$, ${l_{{{\text{P}}_2}}} = 2$. (a2)—(c3)分别对应图(a1)—(c1)中相应放大FWM信号的干涉图样

    Fig. 5.  (a1)–(c1) Under NRA condition, the Spatial patterns observed by the CCD when the signal and pump lights carry different OAM: (a1) ${l_{{{\text{S}}_1}}} = - 1$, ${l_{{{\text{P}}_{1}}}} = 0$; (b1) ${l_{{{\text{S}}_1}}} = 0$, ${l_{{{\text{P}}_1}}} = - 1$; (c1) ${l_{{{\text{P}}_2}}} = 2$, ${l_{{{\text{P}}_{2}}}} = 2$. (a2)–(c3) Interference patterns of the amplified FWM signals corresponding to panels (a1)–(c1).

    图 6  RA条件下, 信号光和泵浦光携带不同OAM时(a1), (c1)前向CCD和(b1), (d1)后向CCD观测的光斑图样 (a1), (b1) ${l_{{{\mathrm{S}}_1}}} = - 1$, ${l_{{{\mathrm{P}}_1}}} = {l_{{{\mathrm{P}}_2}}} = 0$; (c1), (d1) ${l_{{{\mathrm{S}}_1}}} = 0$, ${l_{{{\text{P}}_1}}} = - 1$, ${l_{{{\text{P}}_2}}} = 2$. (a2)—(d3)分别对应图(a1)—(d1)中相应放大FWM信号的干涉图样

    Fig. 6.  Under the condition of RA, the spatial patterns observed by the forward CCD (a1) and (c1), as well as the backward CCD (b1) and (d1) when the signal and pump lights carry different OAM: (a1), (b1) ${l_{{{\text{S}}_1}}} = - 1$, ${l_{{{\text{P}}_1}}} = {l_{{{\text{P}}_2}}} = 0$; (c1), (d1) ${l_{{{\text{S}}_1}}} = 0$, ${l_{{{\text{P}}_1}}} = - 1$, ${l_{{{\text{P}}_2}}} = 2$. (a2)–(d3) Interference patterns of the amplified FWM signals corresponding to panels (a1)–(d1).

    表 1  四路放大FWM信号光的OAM值

    Table 1.  Value of OAM for 4 ways FWM signals.

    ${l_{{{\text{S}}_1}}}$ ${l_{{{\text{C}}_{1}}}}$ ${l_{{{{\text{S'}}}_{1}}}}$ ${l_{{{{\text{C'}}}_{1}}}}$ ${l_{{{\text{S}}_{2}}}}$ ${l_{{{\text{C}}_2}}}$ ${l_{{{{\text{S}}}'_{2}}}}$ $ {l_{{{{\text{C}}}'_{2}}}} $
    ${l_{{{\text{P}}_1}}} = - 1$, ${l_{{{\text{P}}_{2}}}} = 0$ 0 –2 1 –1 0 0 –1 –1
    ${l_{{{\text{P}}_1}}} = - 1$, ${l_{{{\text{P}}_{2}}}} = - 1$ 0 –2 0 –2 0 –2 0 –2
    ${l_{{{\text{P}}_1}}} = - 1$, ${l_{{{\text{P}}_{2}}}}{=}1$ 0 –2 2 0 0 2 –2 0
    ${l_{{{\text{P}}_{1}}}} = - 1$, ${l_{{{\text{P}}_{2}}}} = - 2$ 0 –2 –1 –3 0 –4 1 –3
    ${l_{{{\text{P}}_{1}}}} = - 1$, ${l_{{{\text{P}}_{2}}}} = 2$ 0 –2 3 1 0 4 –3 1
    下载: 导出CSV
    Baidu
  • [1]

    Dimitrios L. Sounas, Andrea Alù 2017 Nat. Photonics 11 774Google Scholar

    [2]

    Yang H, Zhang S, Niu Y, Gong S 2022 Opt. Commun. 515 128195Google Scholar

    [3]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221Google Scholar

    [4]

    Yu Z F, Fan S H 2009 Nat. Photonics 3 91Google Scholar

    [5]

    Aplet L J, Carson J W 1964 Appl. Opt. 3 544Google Scholar

    [6]

    Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758Google Scholar

    [7]

    汪静丽, 皇甫利国, 陈鹤鸣 2021 光学学报 41 0713001Google Scholar

    Wang J L, Huangfu L G, Chen H M 2021 Acta Opt. Sin. 41 0713001Google Scholar

    [8]

    Poo Y, Wu R xin, Lin Z, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903Google Scholar

    [9]

    Zhu L, Fan S 2016 Phys. Rev. Lett. 117 134303Google Scholar

    [10]

    Muñoz de las Heras A, Carusotto I 2022 Phys. Rev. A 106 063523Google Scholar

    [11]

    Tian H, Liu J Q, Siddharth A, Wang R N, Blésin T, He J J, Kippenberg T J, Bhave S A 2021 Nat. Photonics 15 828Google Scholar

    [12]

    Yu Y, Chen Y H, Hu H, Xue W Q, Yvind K, Mork J 2014 Laser Photonics Rev. 9 241

    [13]

    Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M 2012 Science 335 447Google Scholar

    [14]

    Sounas D L, Caloz C, Alù A 2013 Nat. Commun. 4 2407Google Scholar

    [15]

    Zhou H, Zhou K F, Hu W, Guo Q, Lan S, Lin X S, Gopal A V 2006 Appl. Phys. Lett. 99 123111

    [16]

    Li E Z, Ding D S, Yu Y C, Dong M X, Zeng L, Zhang W H 2020 Phys. Rev. Res. 2 033517Google Scholar

    [17]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Volz J, Rauschenbeutel A 2015 Phys. Rev. X 5 041036

    [18]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [19]

    Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, Xiao M 2019 Phys. Rev. A 99 043833Google Scholar

    [20]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774Google Scholar

    [21]

    Wang J, Herrmann J F, Witmer J D, Safavi-Naeini A H, Fan S 2021 Phys. Rev. Lett. 126 193901Google Scholar

    [22]

    Yu Z, Fan S 2009 Appl. Phys. Lett. 94 171116Google Scholar

    [23]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672Google Scholar

    [24]

    Xu H, Jiang L Y, Clerk A A, Harris G E 2019 Nature 568 65Google Scholar

    [25]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [26]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [27]

    Dong M X, Xia K Y, Zhang W H, Yu C Y, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, Nori F 2021 Sci. Adv. 7 8924Google Scholar

    [28]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744Google Scholar

    [29]

    李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东 2022 71 184202Google Scholar

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202Google Scholar

    [30]

    李观荣, 郑怡婷, 徐琼怡, 裴笑山, 耿玥, 严冬, 杨红 2024 73 126401Google Scholar

    Li R G, Zheng Y T, Xu Q Y, Pei X S, Geng Y, Yan D, Yang H 2024 Acta Phys. Sin. 73 126401Google Scholar

    [31]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [32]

    Lü S, Jing J 2017 Phys. Rev. A 96 043873Google Scholar

    [33]

    Liu S, Lou Y, Jing J 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [34]

    余胜, 刘焕章, 刘胜帅, 荆杰泰 2020 69 090303Google Scholar

    Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin. 69 090303Google Scholar

    [35]

    Liang C, Liu B, Xu A N, Wen X, Lu C, Xia K, Tey M K, Liu Y C, You L 2020 Phys. Rev. Lett. 125 123901Google Scholar

    [36]

    Lassen M, Delaubert V, Harb C C, Treps N, Lam P K, Bachor H A 2006 J. Eur. Opt. Soc. - Rapid Publ. 1 06003Google Scholar

    [37]

    Lassen M, Leuchs G, Andersen U L 2009 Phys. Rev. Lett. 102 163602Google Scholar

    [38]

    Wang X, Jing J 2022 Phys. Rev. A 18 024057Google Scholar

    [39]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar

    [40]

    Ding D S, Zhou Z Y, Shi B S, Guo G C 2013 Nat. Commun. 4 2527Google Scholar

    [41]

    Arita Y, Chen M, Wright E M, Dholakia K 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 C14Google Scholar

    [42]

    Liang Y, Lei M, Yan S, Li M, Cai Y, Wang Z, Yu X, Yao B 2018 Appl. Opt. 57 79Google Scholar

    [43]

    Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lü S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [44]

    Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [45]

    Zhou H T, Guo M J, Wang D, Gao J R, Zhang J X, Zhu S Y 2011 J. Phys. B: At. Mol. Opt. Phys. 44 225503Google Scholar

    [46]

    Grischokowsky D 1970 Phys. Rev. Lett. 24 1663

  • [1] 张慧玲, 谢中柱, 郝佳瑞, 房勇. 室温下铯原子体系光学非互易调控实验研究.  , doi: 10.7498/aps.74.20241463
    [2] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易.  , doi: 10.7498/aps.73.20231212
    [3] 曹雷明, 杜金鉴, 张凯, 刘胜帅, 荆杰泰. 基于四波混频过程产生介于锥形探针光和锥形共轭光之间的多模量子关联.  , doi: 10.7498/aps.71.20220081
    [4] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大.  , doi: 10.7498/aps.71.20211324
    [5] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控.  , doi: 10.7498/aps.71.20220506
    [6] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大.  , doi: 10.7498/aps.70.20211324
    [7] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感.  , doi: 10.7498/aps.69.20191745
    [8] 曹亚敏, 武保剑, 万峰, 邱昆. 四波混频光相位运算器原理及其噪声性能研究.  , doi: 10.7498/aps.67.20172638
    [9] 孙江, 常晓阳, 张素恒, 熊志强. 应用双非简并四波混频理论研究原子的碰撞效应.  , doi: 10.7498/aps.65.154206
    [10] 惠战强, 张建国. 基于光子晶体光纤中双抽运四波混频效应的非归零到归零码型转换实验研究.  , doi: 10.7498/aps.62.084209
    [11] 惠战强, 张建国. 基于光子晶体光纤中四波混频效应的单到双非归零到归零码型转换.  , doi: 10.7498/aps.61.014217
    [12] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移.  , doi: 10.7498/aps.61.114214
    [13] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究.  , doi: 10.7498/aps.61.124205
    [14] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究.  , doi: 10.7498/aps.59.3986
    [15] 李培丽, 黄德修, 张新亮. 基于PolSK调制的四波混频型超快全光译码器.  , doi: 10.7498/aps.58.1785
    [16] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频.  , doi: 10.7498/aps.57.4991
    [17] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态.  , doi: 10.7498/aps.55.221
    [18] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频.  , doi: 10.7498/aps.54.149
    [19] 孙 江, 姜 谦, 米 辛, 俞祖和, 傅盘铭. 利用场关联效应抑制瑞利型非简并四波混频的热背底.  , doi: 10.7498/aps.53.450
    [20] 邵钟浩. 具有非均匀零色散波长光纤中的四波混频.  , doi: 10.7498/aps.50.73
计量
  • 文章访问数:  475
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-07
  • 修回日期:  2024-12-21
  • 上网日期:  2024-12-25

/

返回文章
返回
Baidu
map