Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Main factors affecting polaraxis offset characteristics of intact spherical superconducting rotor

YI Xian CUI Chunyan HU Xinning ZHANG Yuan CUI Xu LI Hao WANG Qiuliang

Citation:

Main factors affecting polaraxis offset characteristics of intact spherical superconducting rotor

YI Xian, CUI Chunyan, HU Xinning, ZHANG Yuan, CUI Xu, LI Hao, WANG Qiuliang
cstr: 32037.14.aps.74.20241297
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Superconducting rotor has great potential applications in the field of precision measurement due to its unique physical properties. The superconducting rotor magnetic levitation device can be used to fabricate high-precision angular velocity sensors. Under the action of external interference torque, the pole-axis deviation from the initial position is the cause of the superconducting rotor pole-axis drift error, in which the spherical surface error and the earth’s rotation belong to the main sources of error, and compensating for the pole-axis drift speed caused by the spherical surface error of the superconducting rotor is a key step in realizing the high-precision superconducting rotor magnetic levitation device. Based on this, the factors affecting the spherical surface error of a complete spherical superconducting rotor and the rotation of the earth on the pole-axis offset characteristics of a superconducting rotor are investigated. First, the magnetic support structure of the superconducting rotor is modeled based on the vector magnetic potential equation, the magnetic field strength distribution on the surface of the superconducting rotor in the ideal state (i.e. suspended in the center of the spherical cavity) is analyzed, and the magnetic support force characteristics are investigated. Then the magnetic support interference moment of the superconducting rotor caused by the spherical surface error is analyzed, and a superconducting rotor dynamics model is established based on the superconducting rotor dynamics equations, and the distribution law of the superconducting rotor pole-axis drift error under different rotor structural parameters is given. Finally, the influence of the earth’s rotation on the superconducting rotor drift test is investigated. The results provide a reference for subsequently improving rotor drift accuracy, optimizing rotor structure design and improving drift test methods.
      Corresponding author: CUI Chunyan, ccyan@mail.iee.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2023YFF0713500).
    [1]

    赵尚武 2010 博士学位论文 (北京: 中国科学院大学)

    Zhao S W 2010 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [2]

    Christen D K, Kerchner H R, Sekula S T, Thorel P 1980 Phys. Rev. B 21 102Google Scholar

    [3]

    张裕恒 1997 超导物理(合肥: 中国科学技术大学出版社) 第11—12页

    Zhang Y H 1997 Superconducting Physics (Hefei: University of Science and Technology of China Press) pp11–12

    [4]

    管惟炎, 李宏成, 蔡建华, 吴杭生 1981 超导电性物理基础(北京: 科学出版社)第47—51页

    Guan W Y, Li H C, Cai J H, Wu H S 1981 The Physical Basis of Superconductivity (Beijing: Science Press) pp47–51

    [5]

    Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar

    [6]

    Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657

    [7]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2024 73 038401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2024 Acta Phys. Sin. 73 038401Google Scholar

    [8]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2015 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2015 Acta Phys. Sin. 64 018403Google Scholar

    [9]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2023 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [10]

    杨再敏, 胡新宁, 崔春艳, 王秋良 2007 低温与超导 46 1Google Scholar

    Yang Z M, Hu X N, Cui C Y, Wang Q L 2007 Cryog. Superconduct. 46 1Google Scholar

    [11]

    刘延柱 1979 静电陀螺仪动力学 (北京: 清华大学出版社) 第21—23页)

    Liu Y Z 1979 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23

    [12]

    Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle (Beijing: Machinery Industry Press) pp87–88 [林其壬, 赵佑民 1987 磁路设计原理(北京: 科学出版社)第87—88页]

    Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle (Beijing: Machinery Industry Press) pp87–88

    [13]

    邹继斌, 刘宝庭, 崔淑海, 郑萍 1998 磁路与磁场(哈尔滨: 哈尔滨工业大学出版社)第 43—47 页)

    Zou J B, Liu B T, Cui S H, Zheng P 1998 Magnetic Circuit and Magnetic Field (Harbin: Harbin Institute of Technology Press) pp43–47

    [14]

    刘延柱 2009陀螺力学 (北京: 科学出版社)

    Liu Y Z 2009 Mechanics of Gyroscopes (Beijing: Science Press

    [15]

    高钟毓 2004 静电陀螺仪技术 (北京: 清华大学出版社) 第21—23页)

    Gao Z Y 2004 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23

    [16]

    胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008稀有金属材料与工程 37 436

    Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Metal Mater. Eng. 37 436

    [17]

    何川 2007 博士学位论文 (北京: 中国科学院大学)

    He C 2007 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [18]

    崔春艳, 王秋良, 胡新宁, 赵尚武 2008稀有金属材料与工程 37 57

    Cui C Y, Wang Q L, Hu X N, Zhao S W 2008 Rare Metal Mater. Eng. 37 57

    [19]

    王浩, 王秋良, 胡新宁, 崔春艳, 苏华骏, 何忠名 2018 低温与超导 46 1

    Wang H, Wang Q L, Hu X N, Cui C Y, Su H J, He Z M 2018 Cryog. Superconduct. 46 1

    [20]

    汤继强 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [21]

    刘建华, 王秋良, 严陆光, 李献 2010 电工技术学报 25 1

    Liu J H, Wang Q L, Yan L G, Li X 2010 Transactions China Electrotech. So. 25 1

  • 图 1  超导转子磁悬浮结构

    Figure 1.  Superconducting rotor magnetic levitation structure.

    图 2  (a) 悬浮线圈产生的磁场分布图; (b) 悬浮于中心位置时, 超导转子狭窄缝隙内磁感应强度分布图

    Figure 2.  (a) Distribution of magnetic field generated by suspension coils; (b) distribution map of magnetic induction intensity in the narrow gap of the superconducting rotor when suspended at the center position.

    图 3  上下线圈同时通电2.7—3.0 A时超导磁悬浮系统磁密分布图

    Figure 3.  Magnetic density distribution diagram of superconducting maglev system when the lower coil is energized at 2.7–3.0 A simultaneously.

    图 4  超导转子表面形变分布

    Figure 4.  Surface deformation distribution of superconducting rotor.

    图 5  超导球形转子欧拉角示意图

    Figure 5.  Schematic diagram of Euler angle of superconducting spherical rotor.

    图 6  超导转子磁感应强度计算模型

    Figure 6.  Calculation model for magnetic induction intensity of superconducting rotor.

    图 7  (a)超导转子产生的磁支承干扰力矩; (b)磁支承力矩产生的漂移速度

    Figure 7.  (a) Magnetic support interference torque generated by superconducting rotor; (b) drift velocity generated by magnetic support torque.

    图 8  (a) a2 = 100 μm, a3 = 1 μm, 超导转子产生的磁支承干扰力矩; (b) a2 = 1 μm, a3 = 100 μm, 超导转子产生的磁支承干扰力矩; (c) a2 = 100 μm, a3 = 1 μm, 超导转子磁支承干扰力矩产生的漂移速度; (d) a2 = 1 μm, a3 = 100 μm, 超导转子磁支承干扰力矩产生的漂移速度

    Figure 8.  (a) When a2 = 100 μm, a3 = 1 μm, the superconducting rotor generates magnetic support interference torque; (b) when a2 = 1 μm, a3 = 100 μm, the superconducting rotor generates magnetic support interference torque; (c) a2 = 100 μm, a3 = 1 μm, drift velocity generated by the interference torque of the superconducting rotor magnetic support; (d) a2 = 1 μm, a3 = 100 μm, drift velocity generated by the interference torque of the superconducting rotor magnetic support.

    图 9  a2a3连续变化时, 磁力矩变化情况

    Figure 9.  Changes in magnetic torque during a2 and a3 continuous variation.

    图 10  (a)中心位置向下偏移0.1 mm时, 产生的磁支承干扰力矩; (b)中心位置向上偏移0.1 mm时, 产生的磁支承干扰力矩; (c)中心位置向下偏移0.1 mm时, 超导转子磁支承干扰力矩产生的漂移速度; (d)中心位置向上偏移0.1 mm时, 超导转子磁支承干扰力矩产生的漂移速度

    Figure 10.  (a) When the center position is shifted downwards by 0.1 mm, the magnetic support interference torque generated by the superconducting rotor; (b) when the center position is shifted upwards by 0.1 mm, the magnetic support interference torque generated by the superconducting rotor; (c) drift velocity caused by magnetic support interference torque of superconducting rotor when the center position is shifted downwards by 0.1 mm; (d) drift velocity generated by the interference torque of the superconducting rotor magnetic support when the center position is shifted upwards by 0.1 mm.

    图 11  悬浮在不同位置时, 狭窄缝隙内的磁感应强度大小分布

    Figure 11.  Distribution of magnetic induction intensity in narrow gaps when suspended at different positions.

    图 12  地球自转产生的漂移运动

    Figure 12.  Drift motion caused by the rotation of the earth.

    图 13  由于地球自转, 转子极轴绕罐体轴旋转的轨迹在$XOY$面的投影

    Figure 13.  Due to the rotation of the earth, the trajectory of the rotor’s polar axis rotating around the axis of the tank is projected onto the $XOY$ plane.

    图 14  (a)偏1°时, 极轴运动轨迹; (b)偏4°时, 极轴运动轨迹

    Figure 14.  (a) Polar axis motion trajectory at 1° deviation; (b) when offset by 4°, the trajectory of polar axis motion.

    Baidu
  • [1]

    赵尚武 2010 博士学位论文 (北京: 中国科学院大学)

    Zhao S W 2010 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [2]

    Christen D K, Kerchner H R, Sekula S T, Thorel P 1980 Phys. Rev. B 21 102Google Scholar

    [3]

    张裕恒 1997 超导物理(合肥: 中国科学技术大学出版社) 第11—12页

    Zhang Y H 1997 Superconducting Physics (Hefei: University of Science and Technology of China Press) pp11–12

    [4]

    管惟炎, 李宏成, 蔡建华, 吴杭生 1981 超导电性物理基础(北京: 科学出版社)第47—51页

    Guan W Y, Li H C, Cai J H, Wu H S 1981 The Physical Basis of Superconductivity (Beijing: Science Press) pp47–51

    [5]

    Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar

    [6]

    Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657

    [7]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2024 73 038401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2024 Acta Phys. Sin. 73 038401Google Scholar

    [8]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2015 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2015 Acta Phys. Sin. 64 018403Google Scholar

    [9]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2023 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [10]

    杨再敏, 胡新宁, 崔春艳, 王秋良 2007 低温与超导 46 1Google Scholar

    Yang Z M, Hu X N, Cui C Y, Wang Q L 2007 Cryog. Superconduct. 46 1Google Scholar

    [11]

    刘延柱 1979 静电陀螺仪动力学 (北京: 清华大学出版社) 第21—23页)

    Liu Y Z 1979 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23

    [12]

    Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle (Beijing: Machinery Industry Press) pp87–88 [林其壬, 赵佑民 1987 磁路设计原理(北京: 科学出版社)第87—88页]

    Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle (Beijing: Machinery Industry Press) pp87–88

    [13]

    邹继斌, 刘宝庭, 崔淑海, 郑萍 1998 磁路与磁场(哈尔滨: 哈尔滨工业大学出版社)第 43—47 页)

    Zou J B, Liu B T, Cui S H, Zheng P 1998 Magnetic Circuit and Magnetic Field (Harbin: Harbin Institute of Technology Press) pp43–47

    [14]

    刘延柱 2009陀螺力学 (北京: 科学出版社)

    Liu Y Z 2009 Mechanics of Gyroscopes (Beijing: Science Press

    [15]

    高钟毓 2004 静电陀螺仪技术 (北京: 清华大学出版社) 第21—23页)

    Gao Z Y 2004 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23

    [16]

    胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008稀有金属材料与工程 37 436

    Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Metal Mater. Eng. 37 436

    [17]

    何川 2007 博士学位论文 (北京: 中国科学院大学)

    He C 2007 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [18]

    崔春艳, 王秋良, 胡新宁, 赵尚武 2008稀有金属材料与工程 37 57

    Cui C Y, Wang Q L, Hu X N, Zhao S W 2008 Rare Metal Mater. Eng. 37 57

    [19]

    王浩, 王秋良, 胡新宁, 崔春艳, 苏华骏, 何忠名 2018 低温与超导 46 1

    Wang H, Wang Q L, Hu X N, Cui C Y, Su H J, He Z M 2018 Cryog. Superconduct. 46 1

    [20]

    汤继强 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [21]

    刘建华, 王秋良, 严陆光, 李献 2010 电工技术学报 25 1

    Liu J H, Wang Q L, Yan L G, Li X 2010 Transactions China Electrotech. So. 25 1

  • [1] Yang Jun, Zhao Xiu-Liang, Chen Rui-Da, Hou Jia-Bin, Hou Yu-Miao, He San-Jun, Zhou Chao, Liu Li-Yan. Thermoluminescence peak temperature shift characteristics of NaCl, NaCl:Al, and NaCl:Ca. Acta Physica Sinica, 2024, 73(13): 137801. doi: 10.7498/aps.73.20240231
    [2] Zhang Yuan, Hu Xin-Ning, Cui Chun-Yan, Cui Xu, Niu Fei-Fei, Wang Lu-Zhong, Wang Qiu-Liang. Helium damping characteristics of rotating superconducting rotor. Acta Physica Sinica, 2024, 73(8): 088401. doi: 10.7498/aps.73.20232011
    [3] Lei Yu, Zhao Dan-Ning, Qiao Hai-Hua. Nonlinear characteristics of variations of Earth’s rotation rate. Acta Physica Sinica, 2024, 73(19): 199101. doi: 10.7498/aps.73.20240815
    [4] Zhang Yuan, Hu Xin-Ning, Cui Chun-Yan, Cui Xu, Niu Fei-Fei, Huang Xing, Wang Lu-Zhong, Wang Qiu-Liang. Analysis on magnetic coupling characteristics and carrying capacity of superconducting rotor magnetic levitation structure. Acta Physica Sinica, 2023, 72(12): 128401. doi: 10.7498/aps.72.20230328
    [5] Hou A-Hui, Hu Yi-Hua, Fang Jia-Jie, Zhao Nan-Xiang, Xu Shi-Long. Photon echo probability distribution characteristics and range walk error of small translational target for photon ranging. Acta Physica Sinica, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [6] Bi Si-Zhao, Peng Zhao-Hui. Effect of earth curvature on long range sound propagation. Acta Physica Sinica, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [7] Tang Peng-Bo, Wang Guan-Qing, Wang Lu, Shi Zhong-Yu, Li Yuan, Xu Jiang-Rong. Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere. Acta Physica Sinica, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [8] Cui Chun-Yan, Hu Xin-Ning, Cheng Jun-Sheng, Wang Hui, Wang Qiu-Liang. Analysis of magnetic disturbance torque and drift error in a superconducting suspension system. Acta Physica Sinica, 2015, 64(1): 018403. doi: 10.7498/aps.64.018403
    [9] Lu Da-Quan, Duan Qiu-Ling, Zhan Qiang. Influence of the longitudinal shift of the entrance plane on the propagation properties of beams in strongly nonlocal nonlinear medium. Acta Physica Sinica, 2013, 62(12): 124205. doi: 10.7498/aps.62.124205
    [10] Yang Jin-Hui, Song Jun-Qiang. Saturation property of mean growth of initial error for chaos systems. Acta Physica Sinica, 2012, 61(17): 170511. doi: 10.7498/aps.61.170511
    [11] Ou Jun, Jiang Yue-Song, Li Fang, Liu Li. Shifts of beam centroid of Laguerre-Gaussian beams reflected and refracted at a dielectric interface. Acta Physica Sinica, 2011, 60(11): 114203. doi: 10.7498/aps.60.114203
    [12] Chen Lin-Hui, Rao Chang-Hui. Error analysis of correlating Shack-Hartmann wave-front sensor for a point source. Acta Physica Sinica, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [13] Niu Chao, Li Xi-Hai, Liu Dai-Zhi. Chaotic dynamic characteristics of Z component in geomagnetic variation field. Acta Physica Sinica, 2010, 59(5): 3077-3087. doi: 10.7498/aps.59.3077
    [14] Shen Quan-Hong, Pei Jing, Xu Duan-Yi, Ma Jian-She, Qi Guo-Sheng, Li Li-Hua. Analysis of the focus error characteristic in high density optical disk driver. Acta Physica Sinica, 2006, 55(8): 4132-4138. doi: 10.7498/aps.55.4132
    [15] Bian Bao-Min, Yang Ling, Li Zhen-Hua, Chen Xiao, He An-Zhi, Shen Zhong-Hua. The study of self-simulating properties of spherical shock front attenuation. Acta Physica Sinica, 2004, 53(3): 840-843. doi: 10.7498/aps.53.840
    [16] LI HONG-CHENG, WANG RUI-LAN, WEI BIN. ERROR ANALYSIS FOR MEASUREMENTS OF MICROWAVE SURFACE RESISTANCE OF HIGH-TEMPERATURE SUPERCONDUCTORS BY DIELECTRIC RESONATOR METHOD . Acta Physica Sinica, 2001, 50(5): 938-941. doi: 10.7498/aps.50.938
    [17] WANG DING-XIONG. EVOLUTION OF ANGULAR VELOCITY OF CENTRAL BLACK HOLES OF ACCRETION DISKS. Acta Physica Sinica, 1999, 48(8): 1556-1557. doi: 10.7498/aps.48.1556
    [18] ZHU SI-CHANG. GRAVITATIONAL MASS DEFECT AND ROTATIONAL MASS EFFECT FOR A ROTARY SOLID SPHERE IN GENERAL THEORY OF RELATIVITY. Acta Physica Sinica, 1979, 28(6): 894-900. doi: 10.7498/aps.28.894
    [19] SHEN HAO-MING. ON THE THEORY OF SCATTERING BY A SPHERICAL MIRROR. Acta Physica Sinica, 1978, 27(5): 533-546. doi: 10.7498/aps.27.533
    [20] Lü BAO-WEI. SOME MATHEMATICAL CONSIDERATIONS IN THE THEORY OF DIFFRACTION OF RADIO WAVES AROUND A SPHERICAL EARTH. Acta Physica Sinica, 1965, 21(10): 1744-1751. doi: 10.7498/aps.21.1744
Metrics
  • Abstract views:  735
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2024
  • Accepted Date:  30 October 2024
  • Available Online:  27 November 2024
  • Published Online:  05 January 2025

/

返回文章
返回
Baidu
map