搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转超导转子的氦气阻尼特性

张源 胡新宁 崔春艳 崔旭 牛飞飞 王路忠 王秋良

引用本文:
Citation:

旋转超导转子的氦气阻尼特性

张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 王路忠, 王秋良

Helium damping characteristics of rotating superconducting rotor

Zhang Yuan, Hu Xin-Ning, Cui Chun-Yan, Cui Xu, Niu Fei-Fei, Wang Lu-Zhong, Wang Qiu-Liang
PDF
HTML
导出引用
  • 超导转子磁悬浮装置可制作角速度传感器, 超导转子的高速驱动是实现超导转子磁悬浮装置高精度的基础. 超导转子的热损耗和径向质量偏心会使超导转子在驱动过程中热失超和共振, 所以在超导转子的驱动过程中, 超导球腔中需要保持定量的氦气, 以此传递超导转子的产热和抑制超导转子的共振. 但氦气同时会对超导转子产生阻力, 影响超导转子的驱动过程. 基于此开展了超导转子在氦气中的阻力矩研究, 首先引入范德瓦耳斯方程分析了低温氦气的性质, 提出了一种低温氦气对超导转子阻力矩的研究方法, 并进行实验验证. 然后基于有限元方法分析了超导转子旋转驱动的电磁结构和电磁力矩, 并研究了氦气对超导转子加速过程的影响, 包括临界驱动速度、超导转子的加速时间和氦气对超导转子的摩擦热等. 研究结果提供了一种低温气体对旋转超导体阻力矩的研究方法, 为进一步优化超导转子的驱动过程提供参考.
    The superconducting rotor magnetic levitation device can be used to make an angular velocity sensor, and the high-speed rotating superconducting rotor is the basis for achieving high-precision measurement of the superconducting rotor magnetic levitation device. The heat loss and radial mass eccentricity of the superconducting rotor can cause thermal quenching and resonance in the driving process, which is unfavorable to the driving process of the superconducting rotor. Therefore, it is necessary to maintain a certain quantity of helium gas in the superconducting cavity in the driving process, to transfer the heat generated by the driving process and avoid its resonance. But helium gas also has a drag torque on the rotating superconducting rotor, affecting the driving process of the superconducting rotor. Based on this, the drag torque of the helium on the rotating superconducting rotor is studied. Firstly, the Van der Waals equation is introduced to analyze the properties of low-temperature helium, and a method of studying the drag effect of low-temperature helium on the rotating superconducting rotor is proposed based on Reynolds law and Stoke’s first problem. Then, an experiment on superconducting rotor speed attenuation is conducted to verify the proposed analysis method. Based on the finite element method, the driving electromagnetic structure and driving torque of the superconducting rotor are analyzed. Finally, the influence of helium on the driving process of the superconducting rotor is investigated, including critical driving speed, acceleration time of the superconducting rotor, and frictional heat of the helium on the superconducting rotor. The research results further enrich the study of the drag torque of low-temperature gases on rotating superconductors, providing a reference for further optimizing the driving process of superconducting rotors.
      通信作者: 胡新宁, xininghu@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51721005)资助的课题.
      Corresponding author: Hu Xin-Ning, xininghu@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51721005).
    [1]

    胡新宁, 王厚生, 王晖, 王秋良 2010 光学精密工程 18 169

    Hu X N, Wang H S, Wang H, Wang Q L 2010 Opt. Precis. Eng. 18 169

    [2]

    江磊, 钟智勇, 仪德英, 张怀武 2008 仪器仪表学报 29 1115Google Scholar

    Jiang L, Zhong Z Y, Yi D Y, Zhang H W 2008 Chin. J. Sci. Instrum. 29 1115Google Scholar

    [3]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2015 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2015 Acta Phys. Sin. 64 018403Google Scholar

    [4]

    Schoch K F, Darrel B 1967 Proceedings of the 1966 Cryogenic Engineering Conference Colorado, America, June 13–15, 1967 p657

    [5]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2023 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [6]

    汤继强 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation ( Harbin: Harbin Engineering University

    [7]

    Wang H, Hu X N, Cui C Y, Wang L, Wang Q L 2018 IEEE Trans. Appl. Supercond. 28 5207905Google Scholar

    [8]

    Stephenson W B, Whitfield D L 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7, 1131

    [9]

    Beams J W, Young J L, Moore J W 1946 Appl. Phys. 17 886Google Scholar

    [10]

    Dorfman J R, Sengers J V 1986 Phys. A. Stat. Theor. Phys. 134 283Google Scholar

    [11]

    Wang H, Hu X N, Cui C Y, Wang H, Liu J H, Wang L 2017 IEEE Trans. Appl. Supercond. 27 3601305Google Scholar

    [12]

    Hu X N, Wang Q L, Gao F, Lei Y Z, Cui C Y, Li L K, Yan L G 2014 IEEE Trans. Instrum. Meas. 63 859Google Scholar

    [13]

    Simon I 1953 J. Appl. Phys. 24 19Google Scholar

    [14]

    沈青 2003 稀薄气体动力学 (北京: 国防工业出版社)第7—14页

    Shen Q 2003 Rarefied Gas Dynamics(1st edn). (Beijing: National Defense Industry Press) pp7–14

    [15]

    陈伟芳, 赵文文, 江中正, 刘华林 2016 气体物理 1 9Google Scholar

    Chen W F, Zhao W W, Jiang Z Z, Liu H L 2016 Phys. Gas 1 9Google Scholar

    [16]

    尹钊, 陈雪亮 2003 聊城大学学报 16 98

    Yin Z, Chen X L 2003 J. Liaochen 16 98

    [17]

    石荣彦 2014 物理通报 9 32Google Scholar

    Shi R Y 2014 Phys. Bull. 9 32Google Scholar

    [18]

    李椿, 章立源, 钱尚武 2015 热学 (北京: 高等教育出版社) 第22—24页

    Li C, Zhang L Y, Qian S W 2015 Thermal (3rd Ed.) (Beijing: Higher Education Press) pp22–24

    [19]

    Hu X N, Wang Q L, Cui C Y 2010 IEEE Trans. Appl. Supercond. 20 892Google Scholar

    [20]

    何立明, 赵罡, 程邦勤 2009 气体动力学(北京: 国防出版社)第3—13, 199—201页

    He L M, Zhao G, Cheng B Q 2009 Gas Dynamics(1st edn. ) (Beijing: National Defense Industry Press) pp3–13, 199–201

    [21]

    邹高万, 贺征, 顾璇 2013 黏性流体力学 (北京: 国防出版社)第219—223页

    Zou G W, He Z, Gu X 2013 Viscous Fluid Mechanics (1st edn. ) (Beijing: National Defense Industry Press) pp219–223

    [22]

    韩红彪, 高善群, 李济顺, 张永振 2015 机械科学与技术 34 1621Google Scholar

    Han H B, Gao S Q, Li J S, Zhang Y Z 2015 Mechanical Science and Technology for Aerospace Engineering 34 1621Google Scholar

    [23]

    Hu X N, Wang Q L, Cui C Y, Gao F, Wang H, Li Y, Wang H S, Cheng J S, Dai Y M, Yan L G 2014 IEEE Trans. Instrum. Meas. 63 2789

    [24]

    赵尚武, 胡新宁, 崔春燕, 王秋良 2008 稀有金属材料与工程 37 217Google Scholar

    Zhao S W, Hu X N, Cui C Y, Wang Q L 2008 Rare Metal Mater. Eng. 37 217Google Scholar

    [25]

    王浩, 王秋良, 胡新宁, 崔春燕, 苏华俊, 何忠名 2018 低温与超导 46 1Google Scholar

    Wang H, Wang Q L, Hu X N, Cui C Y, Su H J, He Z M 2018 Cyro. Supercond. 46 1Google Scholar

    [26]

    应纯同1990 气体输运理论及应用 (北京: 清华大学出版社) 第21—25页

    Ying C T 1990 Gas Transport Theory and Applications(1st Ed.) (Beijing: Tsinghua University Press) pp21–25

    [27]

    Vanitterbeek A, Keesom W H 1938 Physica 5 257Google Scholar

    [28]

    赵博, 张洪亮 2013 Ansoft 12在工程电磁场中的应用(北京: 中国水利水电出版社出版社)第47—59页

    Zhao B, Zhang H L 2013 Application of Ansoft 12 in Engineering Electromagnetic Fields (Beijing: China Water Power Press) pp47–59

  • 图 1  超导转子磁悬浮结构示意图

    Fig. 1.  Magnetic suspension structure diagram of the superconducting rotor.

    图 2  超导转子结构模型

    Fig. 2.  Model of the superconducting rotor.

    图 3  力矩器结构模型 (a)超导转子定中结构; (b)力矩器产生磁场分布

    Fig. 3.  Structural model of torquer: (a) Superconducting rotor’s polar axis alignment structure; (b) distribution of magnetic field generated by the torque.

    图 4  悬浮线圈产生的磁场分布图

    Fig. 4.  Distribution of magnetic field generated by suspension coils.

    图 5  超导转子转速衰减实验示意图

    Fig. 5.  Schematic diagram of superconducting rotor speed attenuation experiment.

    图 6  超导转子转速衰减实验

    Fig. 6.  Experimental data on speed attenuation of superconducting rotor.

    图 7  系数αβ的拟合曲线

    Fig. 7.  Fitting curve of coefficients α and β.

    图 8  非稀薄气体中转速衰减实验数据与理论计算数据的比较 (a) 40000 Pa; (b) 4000 Pa; (c) 1000 Pa; (d) 200 Pa; (e) 20 Pa; (f) 3.27 Pa

    Fig. 8.  Comparison between experimental data and theoretical calculations for non rarefied gases: (a) 40000 Pa; (b) 4000 Pa; (c) 1000 Pa; (d) 200 Pa; (e) 20 Pa; (f) 3.27 Pa.

    图 9  稀薄气体中转速衰减实验数据与理论计算数据的比较 (a) 0.221 Pa; (b) 0.016 Pa

    Fig. 9.  Comparison of experimental and theoretical data of speed attenuation in rarefied gas: (a) 0.221 Pa; (b) 0.016 Pa.

    图 10  超导转子驱动结构

    Fig. 10.  Superconducting rotor drive structure.

    图 11  超导转子内孔磁场分布图

    Fig. 11.  Distribution of magnetic field in the inner hole of the superconducting rotor.

    图 12  超导转子驱动力矩分布 (a)单路定子通电; (b)两路定子线圈通电

    Fig. 12.  Distribution of driving torque for superconducting rotor: (a) Single stator energized; (b) two stator coils energized.

    图 13  超导转子临界驱动转速分析

    Fig. 13.  Analysis of critical driving speed of the superconducting rotor.

    图 14  超导转子的驱动过程

    Fig. 14.  Driving process of superconducting rotor.

    图 15  不同压强加速到200 Hz的时间

    Fig. 15.  Time for different pressures to accelerate to 200 Hz.

    图 16  超导转子的氦气摩擦功率

    Fig. 16.  Helium friction power of the superconducting rotor.

    表 1  超导球腔压强对应的克努森数

    Table 1.  Knudsen number corresponding to pressure in superconducting sphere cavity.

    压强/Pa 克努森数Kn 气体领域
    P > 38.4 Kn < 0.01 非稀薄气体
    38.4 > P > 3.84 0.01 < Kn < 0.1 滑流
    3.84 > P > 0.0384 0.1 < Kn < 10 过渡领域
    0.0384 > P 10 < Kn 自由分子流
    下载: 导出CSV

    表 2  实验数据与理论计算误差对比

    Table 2.  Comparison of experimental data and theoretical calculation errors.

    氦气压强/Pa平均误差(衰减1 h)/%最大误差(衰减1 h)/%
    400001.53
    40001.462.05
    10002.144.18
    200–1–2
    201.63.6
    3.2712
    0.221–10.34–20.07
    0.016–13.08–27.6
    下载: 导出CSV
    Baidu
  • [1]

    胡新宁, 王厚生, 王晖, 王秋良 2010 光学精密工程 18 169

    Hu X N, Wang H S, Wang H, Wang Q L 2010 Opt. Precis. Eng. 18 169

    [2]

    江磊, 钟智勇, 仪德英, 张怀武 2008 仪器仪表学报 29 1115Google Scholar

    Jiang L, Zhong Z Y, Yi D Y, Zhang H W 2008 Chin. J. Sci. Instrum. 29 1115Google Scholar

    [3]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2015 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2015 Acta Phys. Sin. 64 018403Google Scholar

    [4]

    Schoch K F, Darrel B 1967 Proceedings of the 1966 Cryogenic Engineering Conference Colorado, America, June 13–15, 1967 p657

    [5]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2023 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [6]

    汤继强 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation ( Harbin: Harbin Engineering University

    [7]

    Wang H, Hu X N, Cui C Y, Wang L, Wang Q L 2018 IEEE Trans. Appl. Supercond. 28 5207905Google Scholar

    [8]

    Stephenson W B, Whitfield D L 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7, 1131

    [9]

    Beams J W, Young J L, Moore J W 1946 Appl. Phys. 17 886Google Scholar

    [10]

    Dorfman J R, Sengers J V 1986 Phys. A. Stat. Theor. Phys. 134 283Google Scholar

    [11]

    Wang H, Hu X N, Cui C Y, Wang H, Liu J H, Wang L 2017 IEEE Trans. Appl. Supercond. 27 3601305Google Scholar

    [12]

    Hu X N, Wang Q L, Gao F, Lei Y Z, Cui C Y, Li L K, Yan L G 2014 IEEE Trans. Instrum. Meas. 63 859Google Scholar

    [13]

    Simon I 1953 J. Appl. Phys. 24 19Google Scholar

    [14]

    沈青 2003 稀薄气体动力学 (北京: 国防工业出版社)第7—14页

    Shen Q 2003 Rarefied Gas Dynamics(1st edn). (Beijing: National Defense Industry Press) pp7–14

    [15]

    陈伟芳, 赵文文, 江中正, 刘华林 2016 气体物理 1 9Google Scholar

    Chen W F, Zhao W W, Jiang Z Z, Liu H L 2016 Phys. Gas 1 9Google Scholar

    [16]

    尹钊, 陈雪亮 2003 聊城大学学报 16 98

    Yin Z, Chen X L 2003 J. Liaochen 16 98

    [17]

    石荣彦 2014 物理通报 9 32Google Scholar

    Shi R Y 2014 Phys. Bull. 9 32Google Scholar

    [18]

    李椿, 章立源, 钱尚武 2015 热学 (北京: 高等教育出版社) 第22—24页

    Li C, Zhang L Y, Qian S W 2015 Thermal (3rd Ed.) (Beijing: Higher Education Press) pp22–24

    [19]

    Hu X N, Wang Q L, Cui C Y 2010 IEEE Trans. Appl. Supercond. 20 892Google Scholar

    [20]

    何立明, 赵罡, 程邦勤 2009 气体动力学(北京: 国防出版社)第3—13, 199—201页

    He L M, Zhao G, Cheng B Q 2009 Gas Dynamics(1st edn. ) (Beijing: National Defense Industry Press) pp3–13, 199–201

    [21]

    邹高万, 贺征, 顾璇 2013 黏性流体力学 (北京: 国防出版社)第219—223页

    Zou G W, He Z, Gu X 2013 Viscous Fluid Mechanics (1st edn. ) (Beijing: National Defense Industry Press) pp219–223

    [22]

    韩红彪, 高善群, 李济顺, 张永振 2015 机械科学与技术 34 1621Google Scholar

    Han H B, Gao S Q, Li J S, Zhang Y Z 2015 Mechanical Science and Technology for Aerospace Engineering 34 1621Google Scholar

    [23]

    Hu X N, Wang Q L, Cui C Y, Gao F, Wang H, Li Y, Wang H S, Cheng J S, Dai Y M, Yan L G 2014 IEEE Trans. Instrum. Meas. 63 2789

    [24]

    赵尚武, 胡新宁, 崔春燕, 王秋良 2008 稀有金属材料与工程 37 217Google Scholar

    Zhao S W, Hu X N, Cui C Y, Wang Q L 2008 Rare Metal Mater. Eng. 37 217Google Scholar

    [25]

    王浩, 王秋良, 胡新宁, 崔春燕, 苏华俊, 何忠名 2018 低温与超导 46 1Google Scholar

    Wang H, Wang Q L, Hu X N, Cui C Y, Su H J, He Z M 2018 Cyro. Supercond. 46 1Google Scholar

    [26]

    应纯同1990 气体输运理论及应用 (北京: 清华大学出版社) 第21—25页

    Ying C T 1990 Gas Transport Theory and Applications(1st Ed.) (Beijing: Tsinghua University Press) pp21–25

    [27]

    Vanitterbeek A, Keesom W H 1938 Physica 5 257Google Scholar

    [28]

    赵博, 张洪亮 2013 Ansoft 12在工程电磁场中的应用(北京: 中国水利水电出版社出版社)第47—59页

    Zhao B, Zhang H L 2013 Application of Ansoft 12 in Engineering Electromagnetic Fields (Beijing: China Water Power Press) pp47–59

  • [1] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良. 定中和驱动一体化的超导转子驱动方法.  , 2024, 73(3): 038401. doi: 10.7498/aps.73.20231455
    [2] 董石泉, 何安, 刘伟, 薛存. 磁悬浮系统中多芯复合Nb3Sn超导线磁通跳跃的可调性研究.  , 2023, 72(1): 017401. doi: 10.7498/aps.72.20221252
    [3] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良. 超导转子磁悬浮结构磁耦合特性及承载能力分析.  , 2023, 72(12): 128401. doi: 10.7498/aps.72.20230328
    [4] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合.  , 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [5] 种涛, 莫建军, 郑贤旭, 傅华, 赵剑衡, 蔡进涛. 斜波压缩下RDX单晶的动力学特性.  , 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [6] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响.  , 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [7] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究.  , 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [8] 温涛, 何剑, 张增星, 田竹梅, 穆继亮, 韩建强, 丑修建, 薛晨阳. 磁悬浮式电磁-摩擦复合生物机械能量采集器.  , 2017, 66(22): 228401. doi: 10.7498/aps.66.228401
    [9] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良. 超导磁悬浮支承系统干扰力矩及漂移误差分析.  , 2015, 64(1): 018403. doi: 10.7498/aps.64.018403
    [10] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响.  , 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [11] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响.  , 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [12] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响.  , 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [13] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响.  , 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [14] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究.  , 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [15] 徐大伟, 梁中翥, 梁静秋, 李伟, 李小奇, 孙智丹, 王维彪. 柔性悬臂电磁驱动光开关的仿真与制作.  , 2010, 59(4): 2479-2484. doi: 10.7498/aps.59.2479
    [16] 马伟增, 季诚昌, 李建国, 许振明. 电磁悬浮熔炼的温度特性.  , 2003, 52(4): 834-839. doi: 10.7498/aps.52.834
    [17] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场.  , 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [18] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析.  , 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [19] 成秉章. 含顺磁杂质超导体的电磁特性.  , 1965, 21(3): 683-685. doi: 10.7498/aps.21.683
    [20] 管惟炎, 刘体汉, 郑国光. Nb3Sn超导电磁铁.  , 1965, 21(7): 1345-1354. doi: 10.7498/aps.21.1345
计量
  • 文章访问数:  1753
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-24
  • 修回日期:  2024-02-03
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回
Baidu
map