-
With the development of ultrafast science and attosecond laser technology, the pump-probe system based on isolated attosecond laser pulses is a key to attosecond science, which will be used to study electronic dynamics on an attosecond time-scale. To obtain stable and reliable signals, it is necessary to ensure ultra-stable and ultra-accurate synchronization. Any timing jitter can cause signal to disperse or get buryied in noise, making it impossible to obtain the true physical mechanism. Based on the above, the delay between pump laser pulse and probe laser pulse must be controlled with an attosecond time resolution. In this work, a dual-layer system is developed to achieve high-precision synchronization locking. To ensure that both layers have the same time jitter, we design an adapter to secure the elements placed during installation. Timing jitter is obtained by shaking interference fringes through fast Fourier transformation, and can be calculated in several ms. Then error signals are fed back to the PZT stage in order to compensate for real-time optical path drift. Through such a design, a time-delay accuracy of 7.64 as to 15.53 as is realized, which is linearly related to the interferometer arm length ranging from 1 m to 5 m, with an R2 of 0.96. Moreover, the error between the experimental result of arm length of 8 m and 10 m and the result fitted with the above data is less than 3 as. These results show that using a small interferometer can achieve the fast detection of the time-delay accuracy of long-arm attosecond pump-probe detection system in large scientific instrument, which is of great significance in guiding ther applications such as in non-collinear attosecond streaking spectroscopy, time-resolved photoelectron spectroscopy, and coherent synthesis.
-
Keywords:
- ultrafast science /
- pump-probe system /
- delay locking
[1] Bloembergen N, Hall P 1999 Rev. Mod. Phys. 71 283
Google Scholar
[2] Zewail A H 1988 Science 242 1645
Google Scholar
[3] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509
Google Scholar
[4] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891
Google Scholar
[5] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186
Google Scholar
[6] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506
Google Scholar
[7] Witting T, Osolodkov M, Schell F, et al. 2022 Optica 9 145
Google Scholar
[8] Wirth A, Hassan M Th, Grguraš I, et al. 2011 Science 334 195
Google Scholar
[9] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95
Google Scholar
[10] Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001
Google Scholar
[11] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477
Google Scholar
[12] Stewart G A, Hoerner P, Debrah D A, Lee S K, Schlegel H B, Li W 2023 Phys. Rev. Lett. 130 083202
Google Scholar
[13] Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453
Google Scholar
[14] Wang J, Chen F M, Pan M J, et al. 2023 Opt. Express 31 9854
Google Scholar
[15] Chen F M, Wang J, Pan M J, Liu J D, Huang J, Zhao K, Yun C, Qian T, Wei Z Y, Ding H 2023 Rev. Sci. Instrum. 94 043905
Google Scholar
[16] Cavalieri A L, Müller N, Uphues Th, et al. 2007 Nature 449 1029
Google Scholar
[17] 江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义 2019 68 214204
Google Scholar
Jiang Y J, Gao Y T, Huang P, Zhao K, Xu S Y, Zhu J F, Fang S B, Teng H, Hou X, Wei Z Y 2019 Acta Phys. Sin. 68 214204
Google Scholar
[18] Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989
Google Scholar
[19] Li M X, Wang H Y, Li X K, Wang J, Zhang J D, San X Y, Ma P, Lu Y N, Liu Z, Wang C C, Yang Y, Luo S Z, Ding D J 2023 J. Electron Spectrosc. 263 147287
Google Scholar
[20] Luo S J, Weissenbilder R, Laurell H, et al. 2023 Adv. Phys. X 8 2250105
Google Scholar
[21] Cooley J W, Tukey J W 1965 Math. Comp. 19 297
Google Scholar
-
-
[1] Bloembergen N, Hall P 1999 Rev. Mod. Phys. 71 283
Google Scholar
[2] Zewail A H 1988 Science 242 1645
Google Scholar
[3] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509
Google Scholar
[4] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891
Google Scholar
[5] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186
Google Scholar
[6] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506
Google Scholar
[7] Witting T, Osolodkov M, Schell F, et al. 2022 Optica 9 145
Google Scholar
[8] Wirth A, Hassan M Th, Grguraš I, et al. 2011 Science 334 195
Google Scholar
[9] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95
Google Scholar
[10] Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001
Google Scholar
[11] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477
Google Scholar
[12] Stewart G A, Hoerner P, Debrah D A, Lee S K, Schlegel H B, Li W 2023 Phys. Rev. Lett. 130 083202
Google Scholar
[13] Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453
Google Scholar
[14] Wang J, Chen F M, Pan M J, et al. 2023 Opt. Express 31 9854
Google Scholar
[15] Chen F M, Wang J, Pan M J, Liu J D, Huang J, Zhao K, Yun C, Qian T, Wei Z Y, Ding H 2023 Rev. Sci. Instrum. 94 043905
Google Scholar
[16] Cavalieri A L, Müller N, Uphues Th, et al. 2007 Nature 449 1029
Google Scholar
[17] 江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义 2019 68 214204
Google Scholar
Jiang Y J, Gao Y T, Huang P, Zhao K, Xu S Y, Zhu J F, Fang S B, Teng H, Hou X, Wei Z Y 2019 Acta Phys. Sin. 68 214204
Google Scholar
[18] Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989
Google Scholar
[19] Li M X, Wang H Y, Li X K, Wang J, Zhang J D, San X Y, Ma P, Lu Y N, Liu Z, Wang C C, Yang Y, Luo S Z, Ding D J 2023 J. Electron Spectrosc. 263 147287
Google Scholar
[20] Luo S J, Weissenbilder R, Laurell H, et al. 2023 Adv. Phys. X 8 2250105
Google Scholar
[21] Cooley J W, Tukey J W 1965 Math. Comp. 19 297
Google Scholar
Catalog
Metrics
- Abstract views: 2074
- PDF Downloads: 94
- Cited By: 0