Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A numerical study of effects on detection height of a radio acoustic sounding system influenced by atmospheric wind and temperature

Wang Pan-Pan Zhou Chen Song Yang Zhang Yuan-Nong Zhao Zheng-Yu

Citation:

A numerical study of effects on detection height of a radio acoustic sounding system influenced by atmospheric wind and temperature

Wang Pan-Pan, Zhou Chen, Song Yang, Zhang Yuan-Nong, Zhao Zheng-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Radio acoustic sounding system (RASS) is a detection technique using the interaction between radio wave and acoustic wave to remotely measure vertical profiles of the atmospheric temperature, and usually composed of a Doppler radar with fixed beam (monostatic or bistatic) and an acoustic source with high power. By combining acoustic propagation equation and radio wave propagation equation in a disturbance medium and using a finite-difference time-domain method, a numerical model describing the interaction between acoustic wave and electric wave is constructed, and the model is used to analyze the effects of wind and temperature on detection height of RASS. In the atmospheric temperature background, the propagations of a single frequency acoustic wave packet under different wind conditions are simulated, and the scattering propagation of electric wave packets corresponding to the acoustic scatterer are analyzed and compared. Besides, the entire physical process are described from the angle of energy density. The numerical simulation results show that the propagation trajectories of both acoustic wave and radio wave backscattering echo are changed due to the existence of wind field and temperature profile. The presence of wind field results in an offset of acoustic wave front, reducing the strength and changing the trajectory of radio wave backscattering echo, so that the detection height is limited due to the reduction of receiving data. The simulation results of the acoustic wave reveal that the temperature profile mainly affects the propagation velocity of acoustic wave, while the presence of wind field may result in shifts of propagation trajectory and acoustic wave front, and the greater the wind speed, the more the horizontal shift of acoustic wave front is. The numerical analyses of scattering propagations of radio wave with the acoustic scatterer at the same height under different background atmospheric conditions manifest that the stronger the wind speed, the more the deviation of electric wave echo from the receive antenna is, and the smaller the echo intensity is when the scattering echo propagates to the same position. The theoretical calculations with the acoustic wave scatterer at different heights under the same atmospheric wind field (strong wind) background demonstrate that if the height of scattering point is reduced, the offset of the scattering echo “bunching point” at the same altitude will be greatly improved and the intensity will be enhanced, but it also means the decline of detection height. In order to improve the detection height under the background of wind field, some methods are adopted, such as using a bistatic radar antenna or increasing the reception antenna area.
    [1]

    Xiong H 2000 Radio Wave Propagation (Beijing: Electronic Industry Press) (in Chinese) [熊皓 2000 无线电波传播(北京: 电子工业出版社)]

    [2]

    Smith Jr P L 1961 5th National Convention on Military Electronics Midwest Research Institute, Washington, DC, System Analysis, June 26-28, 1999

    [3]

    Marshall J M, Peterson A M, Branes Jr A A 1972 Appl. Opt. 11 108

    [4]

    Frankel M S, Chang N J F, Sanders Jr M J 1977 Bull. Am. Meteorol. Soc. 58 928

    [5]

    Fukushima M S, Akita K, Masuda Y 1979 Enuiron. Res. Jpn. 104 1

    [6]

    Azizyan G V, Bovsheverrov V M, Gorelik A G, Yegorov M A, Krayukin G A, Knyazen L V 1981 Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transi. 17 112

    [7]

    Masuda Y 1988 Radio Sci. 23 647

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propagat. 14 302

    [9]

    Taylor C D, Lam D H, Shumpert T H 1969 IEEE Trans. Antennas Propagat. 17 585

    [10]

    Merewether D E 1971 IEEE Trans. Electromagn. Compat. 13 41

    [11]

    Luebbers R J, Kuriz K S, Schneider M, Hmsberger 1991 IEEE Trans. Antennas Propagat. 39 429

    [12]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese) [朱小敏, 任新成, 郭立新 2014 63 054101]

    [13]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. Soc. 18 1674

    [14]

    Liu S B, Liu S Q 2004 Chin. Phys. Soc. 13 1009

    [15]

    Song Y, Zhao Z Y, Zhang Y N 2014 Acta Geophys. Sin. 57 1746 (in Chinese) [宋杨, 赵正予, 张援农 2014 地球 57 1746]

    [16]

    Song Y 2014 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [宋杨 2014 博士学位论文(武汉: 武汉大学)]

    [17]

    Beer T 1974 Atmospheric Waves (London: Adam Hilger)

    [18]

    Smith E K, Weintraub S 1953 PROC. IRE 41 1035

    [19]

    David H, Robert R, Jerl W 2005 Fundamental of Physics (USA: John Wiley and Sons) p509

    [20]

    Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377

    [21]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [22]

    Courant R, Friedrichs K, Lewy H 1928 Math. Ann. 100 32

    [23]

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Foundation (3rd Ed.) (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲民, 龚秀芬2012 声学基础(第三版)(南京: 南京大学出版社)]

    [24]

    Ma W W 2006 Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese) [马文蔚 2006 物理学(第五版)(北京: 高等教育出版社)]

  • [1]

    Xiong H 2000 Radio Wave Propagation (Beijing: Electronic Industry Press) (in Chinese) [熊皓 2000 无线电波传播(北京: 电子工业出版社)]

    [2]

    Smith Jr P L 1961 5th National Convention on Military Electronics Midwest Research Institute, Washington, DC, System Analysis, June 26-28, 1999

    [3]

    Marshall J M, Peterson A M, Branes Jr A A 1972 Appl. Opt. 11 108

    [4]

    Frankel M S, Chang N J F, Sanders Jr M J 1977 Bull. Am. Meteorol. Soc. 58 928

    [5]

    Fukushima M S, Akita K, Masuda Y 1979 Enuiron. Res. Jpn. 104 1

    [6]

    Azizyan G V, Bovsheverrov V M, Gorelik A G, Yegorov M A, Krayukin G A, Knyazen L V 1981 Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transi. 17 112

    [7]

    Masuda Y 1988 Radio Sci. 23 647

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propagat. 14 302

    [9]

    Taylor C D, Lam D H, Shumpert T H 1969 IEEE Trans. Antennas Propagat. 17 585

    [10]

    Merewether D E 1971 IEEE Trans. Electromagn. Compat. 13 41

    [11]

    Luebbers R J, Kuriz K S, Schneider M, Hmsberger 1991 IEEE Trans. Antennas Propagat. 39 429

    [12]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese) [朱小敏, 任新成, 郭立新 2014 63 054101]

    [13]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. Soc. 18 1674

    [14]

    Liu S B, Liu S Q 2004 Chin. Phys. Soc. 13 1009

    [15]

    Song Y, Zhao Z Y, Zhang Y N 2014 Acta Geophys. Sin. 57 1746 (in Chinese) [宋杨, 赵正予, 张援农 2014 地球 57 1746]

    [16]

    Song Y 2014 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [宋杨 2014 博士学位论文(武汉: 武汉大学)]

    [17]

    Beer T 1974 Atmospheric Waves (London: Adam Hilger)

    [18]

    Smith E K, Weintraub S 1953 PROC. IRE 41 1035

    [19]

    David H, Robert R, Jerl W 2005 Fundamental of Physics (USA: John Wiley and Sons) p509

    [20]

    Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377

    [21]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [22]

    Courant R, Friedrichs K, Lewy H 1928 Math. Ann. 100 32

    [23]

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Foundation (3rd Ed.) (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲民, 龚秀芬2012 声学基础(第三版)(南京: 南京大学出版社)]

    [24]

    Ma W W 2006 Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese) [马文蔚 2006 物理学(第五版)(北京: 高等教育出版社)]

  • [1] Feng Bo, Xu Wen-Jun, Cai Jie-Xiong, Wu Ru-Shan, Wang Hua-Zhong. Phase-preserving theory and its linearization approximation for forward scattering field of scalar acoustic wave equation. Acta Physica Sinica, 2023, 72(15): 159101. doi: 10.7498/aps.72.20230194
    [2] Wang Jing-Zhi, Ma Xin, Xiang Zheng, Gu Xu-Dong, Jiao Lu-Huai, Lei Liang-Jian, Ni Bin-Bin. Multi-dimensional modeling of radiation belt electron pitch-angle diffusion coefficients caused by plasmaspheric hiss. Acta Physica Sinica, 2022, 71(22): 229401. doi: 10.7498/aps.71.20220655
    [3] Wang Zhi-Peng, Wang Bing-Zhong, Liu Jin-Pin, Wang Ren. Inverse design method of microscatterer array for realizing scattering field intensity shaping. Acta Physica Sinica, 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [4] Inverse design method of microscatterer array for realizing scattering field intensity shaping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200825
    [5] Han Jin-Hua, Guo Gang, Liu Jian-Cheng, Sui Li, Kong Fu-Quan, Xiao Shu-Yan, Qin Ying-Can, Zhang Yan-Wen. Design of 100-MeV proton beam spreading scheme with double-ring double scattering method. Acta Physica Sinica, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [6] Liu Sheng-Xing, Li Zheng-Lin. Reflecting and scattering of acoustic wave from sea ices. Acta Physica Sinica, 2017, 66(23): 234301. doi: 10.7498/aps.66.234301
    [7] Tang Yuan-He, Cui Jin, Gao Hai-Yang, Qu Ou-Yang, Duan Xiao-Dong, Li Cun-Xia, Liu Li-Na. Calibrations of ground based airglow imaging interferometer for the upper atmospheric wind field measurement. Acta Physica Sinica, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [8] Chi Jing, Li Xiao-Lei, Gao Da-Zhi, Wang Hao-Zhong, Wang Ning. Passive detection of scatterer using autocorrelation of surf noise. Acta Physica Sinica, 2017, 66(19): 194304. doi: 10.7498/aps.66.194304
    [9] Li Wei, Li Jun, Gong Zhi-Xiong. Study on underwater acoustic scattering of a Bessel beam by rigid objects with arbitrary shapes. Acta Physica Sinica, 2015, 64(15): 154305. doi: 10.7498/aps.64.154305
    [10] Cui Shuai, Zhang Xiao-Juan, Fang Guang-You. Investigation of the scattering characteristics from discrete random scatterers based on recursive aggregate T-matrix algorithm. Acta Physica Sinica, 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [11] Shen Fa-Hua, Shu Zhi-Feng, Sun Dong-Song, Wang Zhong-Chun, Xue Xiang-Hui, Chen Ting-Di, Dou Xian-Kang. Improvement of wind retrieval algorithm for Rayleigh Doppler lidar. Acta Physica Sinica, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [12] Chen Xiao-Yi, Liu Man, Li Hai-Xia, Zhang Mei-Na, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu. Experimental study of the evolution of phase vortices in the speckle fields generated by weak scattering screens in the extremely deep Fresnel diffraction region. Acta Physica Sinica, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [13] Shu Zhi-Feng, Dou Xian-Kang, Wang Zhong-Chun, Shen Fa-Hua, Sun Dong-Song, Xue Xiang-Hui, Chen Ting-Di. Wind retrieval algorithm of Rayleigh Doppler lidar. Acta Physica Sinica, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [14] Zhang Lin, Zhang Chun-Min, Jian Xiao-Hua. Passive detection of upper atmospheric wind field based on the Lorentzian line shape profile. Acta Physica Sinica, 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [15] Yu Quan-Zhi, Li Yu-Tong, Jiang Xiao-Hua, Liu Yong-Gang, Wang Zhe-Bin, Dong Quan-Li, Liu Feng, Zhang Zhe, Huang Li-Zhen, C. Danson, D. Pepler, Ding Yong-Kun, Fu Shi-Nian, Zhang Jie. Infulence of electron temperature on the two peaks of Thomson scattering ion-acoustic waves in laser plasmas. Acta Physica Sinica, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [16] Tang Yuan-He, Zhang Chun-Min, Liu Han-Chen, Chen Guang-De, He Jian. Study of the technique of 4-face coated pyramid prism for measurement of upper atmospheric wind field. Acta Physica Sinica, 2005, 54(9): 4065-4071. doi: 10.7498/aps.54.4065
    [17] Song Hong-Sheng, Cheng Chuan-Fu, Zhang Ning-Yu, Ren Xiao-Rong, Teng Shu-Yun, Xu Zhi-Zhan. Study on the dependence of the contrast of image speckles produced by strong scattering-object on random surface and imaging system. Acta Physica Sinica, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [18] Liu Xiao-Dong, Li Shu-Guang, Hou Lan-Tian, Wang Hui-Tian. . Acta Physica Sinica, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [19] LU PENG, WANG YAO-JUN. SOUND WAVE SCATTERING BY ELASTIC CYLINDER ENCASEDIN SOLID MATRIX WITH INTERPHASE LAYER. Acta Physica Sinica, 2001, 50(4): 697-703. doi: 10.7498/aps.50.697
    [20] Zhou Yu-Feng, Wang Yao-Jun, Ma Li, Gao Tian-Fu. . Acta Physica Sinica, 2000, 49(3): 480-486. doi: 10.7498/aps.49.480
Metrics
  • Abstract views:  6124
  • PDF Downloads:  1170
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2014
  • Accepted Date:  12 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map