搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纠缠态量子探测系统的恒虚警检测方法研究

卫容宇 李军 张大命 王炜皓

引用本文:
Citation:

纠缠态量子探测系统的恒虚警检测方法研究

卫容宇, 李军, 张大命, 王炜皓

Research on method of constant false alarm rate of entangled state quantum detection system

Wei Rong-Yu, Li Jun, Zhang Da-Ming, Wang Wei-Hao
PDF
HTML
导出引用
  • 纠缠态量子探测是将量子力学与信息科学相结合, 应用在目标探测领域的一种新技术, 其在灵敏度、抗干扰能力等方面具有突破传统探测技术的潜力. 在雷达探测领域, 恒虚警检测是一项具有重要的意义和应用价值的技术. 然而, 对于纠缠态量子探测系统中恒虚警检测方法的研究还没有展开, 本文针对这一问题, 提出了一种纠缠态量子探测系统的恒虚警检测方法. 该方法通过系统对噪声的实时估计, 自适应调整检测门限, 使得纠缠态量子探测系统在检测过程中始终保持恒定的虚警概率. 仿真结果表明, 所提恒虚警检测方法是正确和有效的, 能够实现纠缠态量子探测系统的恒虚警检测功能. 该方法提升了纠缠态量子探测系统的灵活性和适应性, 为量子探测技术进一步走向实用及应用奠定了理论基础.
    Entangled state quantum detection is a new technology that combines quantum mechanics with information science, and is used in the field of target detection. It has the potential to break through traditional detection technologies in terms of sensitivity and anti-interference ability. In the field of radar detection, constant false alarm rate is a technology with important significance and application value. However, there is no research on the method of the constant false alarm rate in the entangled state quantum detection system. Aiming at this problem, in this paper a method of constant false alarm rate for the entangled state quantum detection system is proposed. In the proposed method the system's real-time estimation of noise is adopted, and the detection threshold is adjusted adaptively, so that the entangled state quantum detection system always maintains a constant false alarm rate. The simulation results show that the proposed method of constant false alarm rate is correct and effective, and can realize the function of the constant false alarm rate of the entangled state quantum detection system. The proposed method effectively improves the flexibility and adaptability of the quantum detection system, and provides a solid theoretical foundation for the practical application of entangled state quantum detection technology.
      通信作者: 李军, junli01@mail.xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771015)和陕西省重点研发计划(批准号: 2019ZDLGY09-04)
      Corresponding author: Li Jun, junli01@mail.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61771015) and the Key Research and Development Program of Shaanxi Province, China (Grant No. 2019ZDLGY09-04)
    [1]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 5700

    [2]

    Dutton Z, Shapiro J H, Guha S 2010 J. Opt. Soc. Am. B 27 A63Google Scholar

    [3]

    Lloyd S 2008 Science 321 1463Google Scholar

    [4]

    Smith J F 2009 Proceedings of SPIE-The International Society for Optical Engineering (Belingham, WA: SPIE) p7342

    [5]

    Shapiro J H 2020 IEEE Trans. Aerosp. Electron. Syst. 35 8

    [6]

    Tan S H, Erkmen B, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Jeffrey H S 2008 Phys. Rev. Lett. 101 253601Google Scholar

    [7]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Genovese M 2013 Phys. Rev. Lett. 110 153603Google Scholar

    [8]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Physics 171 1029

    [9]

    England D G, Balaji B, Sussman B J 2018 Phys. Rev. A 99 023828

    [10]

    Barzanjeh S, Pirandola S, Vitali D, Fink J M 2019 Sci. Adv. 6 eabb0451

    [11]

    Morris P A, Aspden R S, Bell J, Boyd R W, Padgett M J 2015 Nat. Commun. 6 5913Google Scholar

    [12]

    Clemente P, V Durán, Torres-Company V, Tajahuerce E, Lancis J 2010 Opt. Lett. 35 2391Google Scholar

    [13]

    王书, 任益充, 饶瑞中, 苗锡奎 2017 66 150301Google Scholar

    Wang S, Ren Y C, Rao R Z, Miao X K 2017 Acta Phys. Sin. 66 150301Google Scholar

    [14]

    任益充, 王书, 饶瑞中, 苗锡奎 2018 67 140301Google Scholar

    Ren Y C, Wang S, Rao R Z, Miao X K 2018 Acta Phys. Sin. 67 140301Google Scholar

    [15]

    Rohling H 1983 IEEE Trans. Aerosp. Electron. Syst. AES-19 608Google Scholar

    [16]

    Ghosh R, Mandel L 1987 Phys. Rev. Lett. 59 1903Google Scholar

    [17]

    Ou Z Y, Mandel L 1988 Phys. Rev. Lett. 61 50Google Scholar

    [18]

    Walborn S P, Monken C H, Pádua S, Ribeiro P 2010 Phys. Rep. 495 87Google Scholar

    [19]

    Howell J C, Bennink R S, Bentley S J, Boyd R W 2004 Phys. Rev. Lett. 9 210403

    [20]

    Maclean J, Donohue J M, Resch K J 2018 Phys. Rev. Lett. 120 053601Google Scholar

    [21]

    杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2015 64 110301Google Scholar

    Du Y N, Xie W Z, Jin X, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2015 Acta Phys. Sin. 64 110301Google Scholar

    [22]

    吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2016 65 100302Google Scholar

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302Google Scholar

    [23]

    东晨, 赵尚弘, 张宁, 董毅, 赵卫虎, 刘韵 2014 63 200304Google Scholar

    Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H, Liu Y 2014 Acta Phys. Sin. 63 200304Google Scholar

    [24]

    周媛媛, 周学军 2011 60 100301Google Scholar

    Zhou Y Y, Zhou X J 2011 Acta Phys. Sin. 60 100301Google Scholar

    [25]

    张东升, 权菊香, 周春源, 丁良恩 2006 量子光学学报 12 135Google Scholar

    Zhang D S, Quan J X, Zhou C Y, Ding L E 2006 J. Quantum Opt. 12 135Google Scholar

  • 图 1  纠缠态量子探测系统模型

    Fig. 1.  Model of the entangled state quantum detection system.

    图 2  基于符合计数的量子探测系统恒虚警检测原理

    Fig. 2.  Principle of CFAR detection of TCSPC based quantum detection system.

    图 3  信号源纠缠光子数M与接收端符合噪声和信号光子数的关系 (a) M = 1000; (b) M = 3000

    Fig. 3.  Relationship between the number of entangled photons M of the signal source and the number of noise and signal photons at the receiver: (a) M = 1000; (b) M = 3000.

    图 4  检测概率Pd与信号源纠缠光子数M及目标反射率$ \eta $的关系

    Fig. 4.  Relationship between the detection probability Pd and the number of entangled photons M of the signal source and the reflectivity of the target $ \eta $.

    图 5  纠缠态量子探测系统恒虚警检测过程仿真

    Fig. 5.  Simulation of constant false alarm detection process of entangled state quantum detection system.

    图 6  不同虚警概率下, 信噪比与检测概率的关系

    Fig. 6.  Relationship between signal-to-noise ratio and detection probability under different false alarm rate.

    Baidu
  • [1]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 5700

    [2]

    Dutton Z, Shapiro J H, Guha S 2010 J. Opt. Soc. Am. B 27 A63Google Scholar

    [3]

    Lloyd S 2008 Science 321 1463Google Scholar

    [4]

    Smith J F 2009 Proceedings of SPIE-The International Society for Optical Engineering (Belingham, WA: SPIE) p7342

    [5]

    Shapiro J H 2020 IEEE Trans. Aerosp. Electron. Syst. 35 8

    [6]

    Tan S H, Erkmen B, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Jeffrey H S 2008 Phys. Rev. Lett. 101 253601Google Scholar

    [7]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Genovese M 2013 Phys. Rev. Lett. 110 153603Google Scholar

    [8]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Physics 171 1029

    [9]

    England D G, Balaji B, Sussman B J 2018 Phys. Rev. A 99 023828

    [10]

    Barzanjeh S, Pirandola S, Vitali D, Fink J M 2019 Sci. Adv. 6 eabb0451

    [11]

    Morris P A, Aspden R S, Bell J, Boyd R W, Padgett M J 2015 Nat. Commun. 6 5913Google Scholar

    [12]

    Clemente P, V Durán, Torres-Company V, Tajahuerce E, Lancis J 2010 Opt. Lett. 35 2391Google Scholar

    [13]

    王书, 任益充, 饶瑞中, 苗锡奎 2017 66 150301Google Scholar

    Wang S, Ren Y C, Rao R Z, Miao X K 2017 Acta Phys. Sin. 66 150301Google Scholar

    [14]

    任益充, 王书, 饶瑞中, 苗锡奎 2018 67 140301Google Scholar

    Ren Y C, Wang S, Rao R Z, Miao X K 2018 Acta Phys. Sin. 67 140301Google Scholar

    [15]

    Rohling H 1983 IEEE Trans. Aerosp. Electron. Syst. AES-19 608Google Scholar

    [16]

    Ghosh R, Mandel L 1987 Phys. Rev. Lett. 59 1903Google Scholar

    [17]

    Ou Z Y, Mandel L 1988 Phys. Rev. Lett. 61 50Google Scholar

    [18]

    Walborn S P, Monken C H, Pádua S, Ribeiro P 2010 Phys. Rep. 495 87Google Scholar

    [19]

    Howell J C, Bennink R S, Bentley S J, Boyd R W 2004 Phys. Rev. Lett. 9 210403

    [20]

    Maclean J, Donohue J M, Resch K J 2018 Phys. Rev. Lett. 120 053601Google Scholar

    [21]

    杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2015 64 110301Google Scholar

    Du Y N, Xie W Z, Jin X, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2015 Acta Phys. Sin. 64 110301Google Scholar

    [22]

    吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2016 65 100302Google Scholar

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302Google Scholar

    [23]

    东晨, 赵尚弘, 张宁, 董毅, 赵卫虎, 刘韵 2014 63 200304Google Scholar

    Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H, Liu Y 2014 Acta Phys. Sin. 63 200304Google Scholar

    [24]

    周媛媛, 周学军 2011 60 100301Google Scholar

    Zhou Y Y, Zhou X J 2011 Acta Phys. Sin. 60 100301Google Scholar

    [25]

    张东升, 权菊香, 周春源, 丁良恩 2006 量子光学学报 12 135Google Scholar

    Zhang D S, Quan J X, Zhou C Y, Ding L E 2006 J. Quantum Opt. 12 135Google Scholar

  • [1] 谭维翰, 赵超樱, 郭奇志. N量子比特系统的纠缠判据.  , 2023, 72(1): 010301. doi: 10.7498/aps.72.20221524
    [2] 田志富, 吴迪, 胡涛. 圆柱曲面单光子量子雷达散射截面的理论研究.  , 2022, 71(3): 034204. doi: 10.7498/aps.71.20211295
    [3] 石韬, 吕丽花, 李有泉. 量子中继过程中纠缠态的选择.  , 2021, 70(23): 230303. doi: 10.7498/aps.70.20211211
    [4] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达.  , 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [5] 田志富, 吴迪, 胡涛. 圆柱曲面单光子量子雷达散射截面的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211295
    [6] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究.  , 2021, (): . doi: 10.7498/aps.70.20211121
    [7] 张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静. 实现粒子布居高效转移的两种激光脉冲时序方案的理论研究.  , 2017, 66(21): 213301. doi: 10.7498/aps.66.213301
    [8] 任春年, 史鹏, 刘凯, 李文东, 赵洁, 顾永建. 初态对光波导阵列中连续量子行走影响的研究.  , 2013, 62(9): 090301. doi: 10.7498/aps.62.090301
    [9] 徐健, 陈小余, 李海涛. 多进制量子图态纠缠的确定.  , 2012, 61(22): 220304. doi: 10.7498/aps.61.220304
    [10] 范洪义, 李学超. 连续纠缠态表象的几种Schmidt分解、物理意义与应用.  , 2012, 61(20): 200301. doi: 10.7498/aps.61.200301
    [11] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究.  , 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [12] 张闻钊, 李文东, 史鹏, 顾永建. 3对非最大纠缠粒子的确定性纠缠浓缩协议.  , 2011, 60(6): 060303. doi: 10.7498/aps.60.060303
    [13] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [14] 任继刚, 张涵, 蔡昕东, 印娟, 周飞, 彭承志. 基于周期极化KTiOPO4晶体的高亮度纠缠源研制.  , 2009, 58(8): 5169-5173. doi: 10.7498/aps.58.5169
    [15] 梁华秋, 刘金明. 噪声环境下基于两体纠缠态的远程态制备.  , 2009, 58(6): 3692-3698. doi: 10.7498/aps.58.3692
    [16] 李体俊. 纠缠态投影算符的积分.  , 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [17] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送.  , 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [18] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆.  , 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [19] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [20] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
计量
  • 文章访问数:  5285
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-13
  • 修回日期:  2021-09-02
  • 上网日期:  2021-12-27
  • 刊出日期:  2022-01-05

/

返回文章
返回
Baidu
map