Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure and luminescence properties of Li2Gd4(MoO4)7:Sm3+ orange-red phosphor for solid-state lighting

Lu Jing-Wen Zhao Jin Zhang Yong-Chun Tu Ru-Ting Liu Fu-Ni Leng Zhi-Hua

Citation:

Structure and luminescence properties of Li2Gd4(MoO4)7:Sm3+ orange-red phosphor for solid-state lighting

Lu Jing-Wen, Zhao Jin, Zhang Yong-Chun, Tu Ru-Ting, Liu Fu-Ni, Leng Zhi-Hua
cstr: 32037.14.aps.73.20241017
PDF
HTML
Get Citation
  • White LEDs have the broad application prospect and market demand, while the red phosphor can greatly affect the color temperature and color rendering index of the modulated white light. In this work, a series of Li2Gd4–x Smx(MoO4)7 (x = 0.01–0.13) phosphors is prepared by the high-temperature solid phase method. The successful doping of Sm3+ into Li2Gd4(MoO4)7 is confirmed by X-ray diffractometry (XRD) and does not lead to any change in crystal structure. The samples are detected by scanning electron microscope (SEM) to have irregular blocky structures with particle size less than 20 μm. The existence of Li, Gd, Mo, O and Sm elements in the phosphor is confirmed by energy dispersive X-ray spectroscopy (EDS). The observation of X-ray photoelectron spectroscopy (XPS) shows that the activators are successfully doped into materials. Under 406 nm excitation, the emission peaks of the samples are located at 563, 598, 645 and 706 nm respectively, which are caused by the 4f-4f transition of Sm3+, and the strongest emission peak comes from 4G5/26H9/2 transition. It is found that optimal concentration of Sm3+ is 0.07. With the increase of Sm3+ concentration, the fluorescence lifetime decreases gradually. The temperature-dependent emission of phosphor is also studied. The emission intensity at 473 K is still 79% of that at 298 K, indicating that the sample has excellent heat resistance. The CIE chromaticity diagram shows the luminescence of the prepared phosphor is located in the orange-red region and the color purity is high (99%). Moreover, a white LED is fabricated using the optical doped phosphor, which has CIE coordinates of (0.3788, 0.3134) that are located in the circle of white light. Research shows that the Li2Gd4(MoO4)7:Sm3+ phosphor is a promising orange-red phosphor for white LEDs.
      Corresponding author: Zhao Jin, zhaojin@xauat.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804265), the Key Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2022TD-30), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2024JC-YBMS-384).
    [1]

    Li X H, Ding J N, Tang Z, Lin X Y, Dong H, Wu A H, Jiang L W 2024 Ceram. Int. 50 20Google Scholar

    [2]

    Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, Zhang J, Zhang X, Cao Y, Wang Y, Li X, Xu S, Yu H, Chen B J 2024 Results Phys. 56 107238Google Scholar

    [3]

    王国静 2021 硕士学位论文 (保定: 河北大学)

    Wang G J 2021 M. S. Thesis (Baoding: Hebei University

    [4]

    王新瑞 2020 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Wang X R 2020 M. S. Thesis (Harbin: Harbin Institute of technology

    [5]

    王贵民 2021 硕士学位论文(南京: 南京邮电大学)

    Wang G M 2021 M. S. Thesis (Nanjing: Nanjing university of posts and telecommunications

    [6]

    Cao R P, Tu Y F, Chen T, Li L, Lan B, Liu R, Luo Z Y, Yi X H 2023 J. Optics-UK. 52 1278Google Scholar

    [7]

    Dalal H, Kumar M, Kaushik S, Sehrawat P, Sheoran M, Sehrawat N, Malik R K 2023 J. Electron. Mater. 52 2780Google Scholar

    [8]

    Xiao Z L, Ye J T, Wu B K, Wang F Z, Li J H, Zhang B H, Liu W Z, Han L, You W X 2022 Appl. Phys. A 128 1Google Scholar

    [9]

    Chauhan V, Dixit P, Pandey P C 2021 J. Rare Earth 39 1336Google Scholar

    [10]

    陆逸, 许英朝, 孟宪国, 鹿晨东, 杨伟斌, 吴盼盼, 刘月 2024 中国稀土学报 42 216

    Lu Y, Xu Y C, Meng X G, Lu C D, Yang W B, Wu P P, Liu Y 2024 J. Rare Earth 42 216

    [11]

    Wang C W, Peng L X, Qin F, Kou M, Wang Y D, Xu L L, Zhang Z G 2024 Opt. Mater. 154 115741

    [12]

    Zhao J X, Zhang Y, Wang T A, Guan L, Dong G Y, Liu Z Y, Fu N, Wang F H, Li X, 2023 Ceram. Int. 49 29505Google Scholar

    [13]

    杨伟斌, 熊飞兵, 杨寅, 周琼, 谢岚驰, 凌爽, 罗新 2022 发光学报 43 879Google Scholar

    Yang W B, Xiong F B, Yang Y, Zhou Q, Xie L C, Ling S, Luo X 2022 Chin. J. Lumin. 43 879Google Scholar

    [14]

    任艳东, 吕树臣 2011 60 087804Google Scholar

    Ren Y D, Lv S C, 2011 Acta Phys. Sin. 60 087804Google Scholar

    [15]

    赵聪, 孟庆裕, 孙文军 2015 64 107803Google Scholar

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803Google Scholar

    [16]

    Ju Z H, Wei R P, Ma J X, Pang C R, Liu W S 2010 J. Alloys Compds. 507 133Google Scholar

    [17]

    Yang R Q, Li J, Xie X J, Lian J J, Wang C Y, Li C L, Su H R, Zou Z Q, Xie S A, Yu R J 2024 J. Lumin. 267 120366Google Scholar

    [18]

    关丽, 魏伟, 刘超, 郭树青, 李旭, 杨志平 2013 硅酸盐学报 41 62Google Scholar

    Guan L, Wei W, Liu Chao, Guo S Q, Li X, Yang Z P 2013 J. Chin. Ceram. Soc. 41 62Google Scholar

    [19]

    韩建伟, 林林, 童玉清, 羊富强, 曹林, 刘行仁 2012 稀土 33 50

    Han J W, Lin L, Tong Y Q, Yang F Q, Cao L, Liu X R 2012 Chin. Rare Earths 33 50

    [20]

    Yu Z M, Luo Z Y, Liu X R, Pun E Y B, Lin H 2019 Opt. Mater. 93 76Google Scholar

    [21]

    骆志杨 2020 硕士学位论文(大连: 大连工业大学)

    Luo Z Y 2020 M. S. Thesis (Dalian: Dalian Polytechnic University

    [22]

    Chen J Q, Chen J Y, Zhang W N, Xu S J, Chen L P, Guo H 2023 Ceram. Int. 49 16252Google Scholar

    [23]

    Jiang K Z, Zhou C, Li W H, Su H R, He D M, Chen X Y, Zhang D, Xie S A, Yu R J 2024 J. Alloys Compds. 980 173518Google Scholar

    [24]

    Fan M H, Liu S, Yang K, Guo J, Wang J X, Wang X H, Liu Q, Wei B 2020 Ceram. Int. 46 6926Google Scholar

    [25]

    Cao R P, Wang X T, Jiao Y M, Ouyang X, Guo S L, Liu P, Ao H, Cao C Y 2019 J. Lumin. 212 23Google Scholar

    [26]

    Ogugua S N, Shaat S K K, Swart H C, Kroon R E, Ntwaeaborwa O M 2019 J. Alloys Compds. 775 950Google Scholar

    [27]

    樊霞霞, 高志翔, 屈文山, 田翠锋, 李建刚, 李伟, 董丽娟, 石云龙 2022 无机化学学报 38 1016Google Scholar

    Fan X X, Gao Z X, Qu W S, Tian C F, Li J G, Li W, Dong L J, Shi Y L 2022 Inorg. Chim. 38 1016Google Scholar

    [28]

    Kumar I, Gathania A K 2022 J. Mater. Sci. Mater. El. 33 328Google Scholar

    [29]

    Sun G H, Chen Q L 2023 J. Alloys Compds. 936 168263Google Scholar

    [30]

    Zhao C C, Yin X, Huang F Q, Hang Y 2011 J. Solid State Chem. 184 3190Google Scholar

    [31]

    Li H, Li L, Zhao W, Zhou X, Hua Y 2023 Mater. Today Chem. 32 101661Google Scholar

    [32]

    Ji C Y, Huang Z, Tian X Y 2020 J. Alloys Compds. 825 154176Google Scholar

    [33]

    Liu H K, Nie K, Zhang Y Y, Mei L F, Deyneko D V, Ma X X 2023 J. Rare Earth 41 1288Google Scholar

    [34]

    阿依努热木·吐尔逊, 王磊, 苏比伊努尔·吉力力, 艾尔肯·斯地克 2022 激光与光电子学进展 59 329

    Ayinuremu T, Wang L, Subiyinuer J, Aierken S 2022 Prog. Laser Optoelectron. 59 329

    [35]

    Yang Y, Pan H, Guan L, Wang D W, Zhao J X, Yang J F, Yang Z P, Li X 2020 J. Mater. Res. Technol. 9 3847Google Scholar

    [36]

    Liu Y Y, Shi W, Liao D L, Yang X Y, Gao J, Ma Z J, Guo J, Gong N, Liu L, Chang M X, Deng B, Yu R J 2021 J. Am. Ceram. Soc. 104 5966Google Scholar

    [37]

    Tang Z, Sun Z G, Zheng Y Q, Chen G J, Li X H, Jiang L W 2023 Ceram. Int. 49 10064Google Scholar

    [38]

    张恒, 陈伟, 姜锋, 朱德生 2023 稀土 44 28

    Zhang H, Chen W, Jiang F, Zhu D S 2023 Chin. Rare Earths. 44 28

    [39]

    Wang J X, Guo J, Lv Q Y, Ma Z J, Feng X Y, Lu Y H, Gao J, Chen W S, Deng B, Yu R J 2022 J. Lumin. 241 118459Google Scholar

    [40]

    Mu Y X, Yao J H, Wan X M, Mao X J, Luo L H 2022 J. Alloys Compd. 909 164801Google Scholar

    [41]

    Xue J P, Song M J, Noh H M, Park S H, Lee B R, Kim J H, Jeong J H 2020 J. Alloys Compds. 817 152705Google Scholar

    [42]

    Han B J, Ren J, Teng P P, Zhu J B, Shen Y, Li Z A, Zhu X L, Yang X H 2022 Ceram. Int. 48 971Google Scholar

    [43]

    Zhang Z C, Ran W G, Wang F K, Jiang H X, Yan T J 2024 Ceram. Int. 50 5614Google Scholar

    [44]

    Huo X X, Wang Z J, Tao C J, Zhang N, Wang D W, Zhao J X, Yang Z P, Li P L 2022 J. Alloys Compds. 902 163823Google Scholar

    [45]

    Du H Y, Zhu G, Li Z W, Li S S, He M, Bi Z H, Xin S Y 2023 Spectrochim. Acta A 302 123134Google Scholar

    [46]

    Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252Google Scholar

    [47]

    Cui R R, Guo X, Deng C Y 2020 J. Lumin. 224 117233Google Scholar

    [48]

    Wu G D, Xue J Q, Li X Y, Bi Q, Sheng M J, Leng Z H 2023 Ceram. Int. 49 10615Google Scholar

  • 图 1  样品的物相分析与结构 (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01, 0.07, 0.13)的XRD图谱; (b) Li2Gd4(MoO4)7的晶体结构

    Figure 1.  Phase analysis and structrue of samples: (a) XRD patterns of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01, 0.07, 0.13); (b) crystal structure of Li2Gd4(MoO4)7.

    图 2  Li2Gd4(MoO4)7:0.07Sm3+荧光粉的形貌分析 (a) SEM图; (b)—(g)各元素分布图和EDS能谱图

    Figure 2.  Morphology analysis of Li2Gd4(MoO4)7:0.07Sm3+: (a) SEM image; (b)–(g) distribution of elements and EDS energy spectrum.

    图 3  (a) Li2Gd4(MoO4)7:0.07Sm3+荧光粉XPS全谱; (b)—(f) Li 1s, Gd 4d, Mo 3d, O 1s和Sm 3d核心级频谱

    Figure 3.  (a) Full XPS spectrum of Li2Gd4(MoO4)7:0.07Sm3+ phosphor; (b)–(f) Li 1s, Gd 4d, Mo 3d, O 1s and Sm 3d core-level spectra.

    图 4  Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)样品的荧光光谱 (a) 激发光谱; (b) 发射光谱

    Figure 4.  Fluorescence spectra of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13) samples: (a) Excitation spectra; (b) emission spectra.

    图 5  (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)的发射光谱; (b) 发射强度与Sm3+掺杂浓度的关系图; (c) lg(I/x)与lg(x)的关系曲线; (d) Sm3+的掺杂浓度与598, 645 nm处发射峰积分面积关系图

    Figure 5.  (a) Emission spectra of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13); (b) the relationship between emission intensity and Sm3+ doping concentration; (c) lg(I/x)-lg(x); (d) the relationship between the concentration of Sm3+ and the emission integral intensity at 598 nm and 645 nm.

    图 6  荧光衰减曲线和发光机理 (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)系列样品在645 nm处的寿命衰减曲线(λex = 406 nm); (b) Sm3+的能级跃迁图

    Figure 6.  Fluorescence attenuation curves and luminescence mechanism: (a) Lifetime decay curves of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13) at 645 nm (λex = 406 nm); (b) energy level transition diagram of Sm3+.

    图 7  (a) Li2Gd4(MoO4)7:0.07Sm3+荧光粉在不同温度下的发光光谱; (b) 样品在298—448 K范围内的热行为映射图; (c) 归一化发光强度随温度的变化; (d) $\ln[(I_0/I) - 1]$与10000/T关系

    Figure 7.  (a) Luminescence spectra of Li2Gd4(MoO4)7:0.07Sm3+ phosphor at different temperatures; (b) the thermal behavior mapping diagram of sample in the range of 298–448 K; (c) the normalized luminescence intensity varies with temperature; (d) the relationship between $\ln[(I_0/I) -1] $ of phosphor and 10000/T.

    图 8  (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)荧光粉在406 nm激发下的色坐标图; (b) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)的色度坐标x, y点线图

    Figure 8.  (a) Color coordinates of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13) excited at 406 nm; (b) the chromaticity coordinates x, y point plot of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13).

    图 9  (a) Li2Gd4(MoO4)7:0.07Sm3+的内量子效率和放大图; (b)白光LED装置的色坐标、电致发光光谱及照片

    Figure 9.  (a) Internal quantum efficiency of Li2Gd4(MoO4)7:0.07Sm3+ and enlarged profile; (b) the color coordinates, electroluminescence spectrum and LED image of the fabricated w-LED.

    表 1  Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)的CIE色度坐标及色纯度

    Table 1.  The CIE coordinates and color purity of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13).

    Concentration of Sm3+ CIE coordinates
    (x, y)
    Color purity/%
    x = 0.01 (0.6311, 0.3682) 99.77
    x = 0.03 (0.6314, 0.3679) 99.86
    x = 0.05 (0.6315, 0.3678) 99.89
    x = 0.07 (0.6315, 0.3679) 99.89
    x = 0.09 (0.6318, 0.3676) 99.98
    x = 0.11 (0.6313, 0.3680) 99.83
    x = 0.01 (0.6312, 0.3681) 99.80
    DownLoad: CSV
    Baidu
  • [1]

    Li X H, Ding J N, Tang Z, Lin X Y, Dong H, Wu A H, Jiang L W 2024 Ceram. Int. 50 20Google Scholar

    [2]

    Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, Zhang J, Zhang X, Cao Y, Wang Y, Li X, Xu S, Yu H, Chen B J 2024 Results Phys. 56 107238Google Scholar

    [3]

    王国静 2021 硕士学位论文 (保定: 河北大学)

    Wang G J 2021 M. S. Thesis (Baoding: Hebei University

    [4]

    王新瑞 2020 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Wang X R 2020 M. S. Thesis (Harbin: Harbin Institute of technology

    [5]

    王贵民 2021 硕士学位论文(南京: 南京邮电大学)

    Wang G M 2021 M. S. Thesis (Nanjing: Nanjing university of posts and telecommunications

    [6]

    Cao R P, Tu Y F, Chen T, Li L, Lan B, Liu R, Luo Z Y, Yi X H 2023 J. Optics-UK. 52 1278Google Scholar

    [7]

    Dalal H, Kumar M, Kaushik S, Sehrawat P, Sheoran M, Sehrawat N, Malik R K 2023 J. Electron. Mater. 52 2780Google Scholar

    [8]

    Xiao Z L, Ye J T, Wu B K, Wang F Z, Li J H, Zhang B H, Liu W Z, Han L, You W X 2022 Appl. Phys. A 128 1Google Scholar

    [9]

    Chauhan V, Dixit P, Pandey P C 2021 J. Rare Earth 39 1336Google Scholar

    [10]

    陆逸, 许英朝, 孟宪国, 鹿晨东, 杨伟斌, 吴盼盼, 刘月 2024 中国稀土学报 42 216

    Lu Y, Xu Y C, Meng X G, Lu C D, Yang W B, Wu P P, Liu Y 2024 J. Rare Earth 42 216

    [11]

    Wang C W, Peng L X, Qin F, Kou M, Wang Y D, Xu L L, Zhang Z G 2024 Opt. Mater. 154 115741

    [12]

    Zhao J X, Zhang Y, Wang T A, Guan L, Dong G Y, Liu Z Y, Fu N, Wang F H, Li X, 2023 Ceram. Int. 49 29505Google Scholar

    [13]

    杨伟斌, 熊飞兵, 杨寅, 周琼, 谢岚驰, 凌爽, 罗新 2022 发光学报 43 879Google Scholar

    Yang W B, Xiong F B, Yang Y, Zhou Q, Xie L C, Ling S, Luo X 2022 Chin. J. Lumin. 43 879Google Scholar

    [14]

    任艳东, 吕树臣 2011 60 087804Google Scholar

    Ren Y D, Lv S C, 2011 Acta Phys. Sin. 60 087804Google Scholar

    [15]

    赵聪, 孟庆裕, 孙文军 2015 64 107803Google Scholar

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803Google Scholar

    [16]

    Ju Z H, Wei R P, Ma J X, Pang C R, Liu W S 2010 J. Alloys Compds. 507 133Google Scholar

    [17]

    Yang R Q, Li J, Xie X J, Lian J J, Wang C Y, Li C L, Su H R, Zou Z Q, Xie S A, Yu R J 2024 J. Lumin. 267 120366Google Scholar

    [18]

    关丽, 魏伟, 刘超, 郭树青, 李旭, 杨志平 2013 硅酸盐学报 41 62Google Scholar

    Guan L, Wei W, Liu Chao, Guo S Q, Li X, Yang Z P 2013 J. Chin. Ceram. Soc. 41 62Google Scholar

    [19]

    韩建伟, 林林, 童玉清, 羊富强, 曹林, 刘行仁 2012 稀土 33 50

    Han J W, Lin L, Tong Y Q, Yang F Q, Cao L, Liu X R 2012 Chin. Rare Earths 33 50

    [20]

    Yu Z M, Luo Z Y, Liu X R, Pun E Y B, Lin H 2019 Opt. Mater. 93 76Google Scholar

    [21]

    骆志杨 2020 硕士学位论文(大连: 大连工业大学)

    Luo Z Y 2020 M. S. Thesis (Dalian: Dalian Polytechnic University

    [22]

    Chen J Q, Chen J Y, Zhang W N, Xu S J, Chen L P, Guo H 2023 Ceram. Int. 49 16252Google Scholar

    [23]

    Jiang K Z, Zhou C, Li W H, Su H R, He D M, Chen X Y, Zhang D, Xie S A, Yu R J 2024 J. Alloys Compds. 980 173518Google Scholar

    [24]

    Fan M H, Liu S, Yang K, Guo J, Wang J X, Wang X H, Liu Q, Wei B 2020 Ceram. Int. 46 6926Google Scholar

    [25]

    Cao R P, Wang X T, Jiao Y M, Ouyang X, Guo S L, Liu P, Ao H, Cao C Y 2019 J. Lumin. 212 23Google Scholar

    [26]

    Ogugua S N, Shaat S K K, Swart H C, Kroon R E, Ntwaeaborwa O M 2019 J. Alloys Compds. 775 950Google Scholar

    [27]

    樊霞霞, 高志翔, 屈文山, 田翠锋, 李建刚, 李伟, 董丽娟, 石云龙 2022 无机化学学报 38 1016Google Scholar

    Fan X X, Gao Z X, Qu W S, Tian C F, Li J G, Li W, Dong L J, Shi Y L 2022 Inorg. Chim. 38 1016Google Scholar

    [28]

    Kumar I, Gathania A K 2022 J. Mater. Sci. Mater. El. 33 328Google Scholar

    [29]

    Sun G H, Chen Q L 2023 J. Alloys Compds. 936 168263Google Scholar

    [30]

    Zhao C C, Yin X, Huang F Q, Hang Y 2011 J. Solid State Chem. 184 3190Google Scholar

    [31]

    Li H, Li L, Zhao W, Zhou X, Hua Y 2023 Mater. Today Chem. 32 101661Google Scholar

    [32]

    Ji C Y, Huang Z, Tian X Y 2020 J. Alloys Compds. 825 154176Google Scholar

    [33]

    Liu H K, Nie K, Zhang Y Y, Mei L F, Deyneko D V, Ma X X 2023 J. Rare Earth 41 1288Google Scholar

    [34]

    阿依努热木·吐尔逊, 王磊, 苏比伊努尔·吉力力, 艾尔肯·斯地克 2022 激光与光电子学进展 59 329

    Ayinuremu T, Wang L, Subiyinuer J, Aierken S 2022 Prog. Laser Optoelectron. 59 329

    [35]

    Yang Y, Pan H, Guan L, Wang D W, Zhao J X, Yang J F, Yang Z P, Li X 2020 J. Mater. Res. Technol. 9 3847Google Scholar

    [36]

    Liu Y Y, Shi W, Liao D L, Yang X Y, Gao J, Ma Z J, Guo J, Gong N, Liu L, Chang M X, Deng B, Yu R J 2021 J. Am. Ceram. Soc. 104 5966Google Scholar

    [37]

    Tang Z, Sun Z G, Zheng Y Q, Chen G J, Li X H, Jiang L W 2023 Ceram. Int. 49 10064Google Scholar

    [38]

    张恒, 陈伟, 姜锋, 朱德生 2023 稀土 44 28

    Zhang H, Chen W, Jiang F, Zhu D S 2023 Chin. Rare Earths. 44 28

    [39]

    Wang J X, Guo J, Lv Q Y, Ma Z J, Feng X Y, Lu Y H, Gao J, Chen W S, Deng B, Yu R J 2022 J. Lumin. 241 118459Google Scholar

    [40]

    Mu Y X, Yao J H, Wan X M, Mao X J, Luo L H 2022 J. Alloys Compd. 909 164801Google Scholar

    [41]

    Xue J P, Song M J, Noh H M, Park S H, Lee B R, Kim J H, Jeong J H 2020 J. Alloys Compds. 817 152705Google Scholar

    [42]

    Han B J, Ren J, Teng P P, Zhu J B, Shen Y, Li Z A, Zhu X L, Yang X H 2022 Ceram. Int. 48 971Google Scholar

    [43]

    Zhang Z C, Ran W G, Wang F K, Jiang H X, Yan T J 2024 Ceram. Int. 50 5614Google Scholar

    [44]

    Huo X X, Wang Z J, Tao C J, Zhang N, Wang D W, Zhao J X, Yang Z P, Li P L 2022 J. Alloys Compds. 902 163823Google Scholar

    [45]

    Du H Y, Zhu G, Li Z W, Li S S, He M, Bi Z H, Xin S Y 2023 Spectrochim. Acta A 302 123134Google Scholar

    [46]

    Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252Google Scholar

    [47]

    Cui R R, Guo X, Deng C Y 2020 J. Lumin. 224 117233Google Scholar

    [48]

    Wu G D, Xue J Q, Li X Y, Bi Q, Sheng M J, Leng Z H 2023 Ceram. Int. 49 10615Google Scholar

  • [1] Ruan Yuan-Dong, Zhang Zhi-Hao, Jia Jiang-Xie, Gu Yu-Ning, Zhang Shan-Duan, Cui Xu-Gao, Hong Wei, Bai Yan-Zheng, Tian Peng-Fei. Application of ultraviolet light sources in charge management systems for space gravitational wave detection. Acta Physica Sinica, 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [2] Luo Jie, Zhang Zi-Qiu, Xu Jun-Hao, Qin Zhao-Ting, Zhao Yuan-Shuai, He Hong, Li Guan-Nan, Tang Jian-Feng. Synthesis and luminescent properties of rare earths doped Gd2Te4O11 tellurite phosphors. Acta Physica Sinica, 2023, 72(1): 017801. doi: 10.7498/aps.72.20221341
    [3] Lü Zhao-Cheng, Li Ying, Quan Gui-Ying, Zheng Qing-Hua, Zhou Wei-Wei, Zhao Wang. Preparation and photoluminescent properties of near-UV broadband-excited red phosphor (Gd1-xEux)6(Te1-yMoy)O12 for white-LEDs. Acta Physica Sinica, 2017, 66(11): 117801. doi: 10.7498/aps.66.117801
    [4] Liu Wen-Quan, Chao Ke-Fu, Wu Wen-Jie, Bao Fu-Quan, Zhou Bing-Qing. CaAlSiN3:Eu2+ red phosphors synthesized by atmospheric nitrogen and their luminescence properties. Acta Physica Sinica, 2016, 65(20): 207801. doi: 10.7498/aps.65.207801
    [5] Chen Qiao-Qiao, Dai Neng-Li, Liu Zi-Jun, Chu Ying-Bo, Li Jin-Yan, Yang Lü-Yun. Luminescence property of Ce3+-Tb3+-Sm3+ co-doped borosilicate glass under various ultraviolet excitations. Acta Physica Sinica, 2014, 63(7): 077803. doi: 10.7498/aps.63.077803
    [6] Ren Guo-Hao, Pei Yu, Wu Yun-Tao, Chen Xiao-Feng, Li Huan-Ying, Pan Shang-Ke. Influence of Ce doping concentration on the luminescence properties of LaCl3:Ce scintillation crystals. Acta Physica Sinica, 2014, 63(3): 037802. doi: 10.7498/aps.63.037802
    [7] Zhou Ren-Di, Huang Xue-Fei, Qi Zhi-Jian, Huang Wei-Gang. Preparation and luminescent properties of Ca2Si(O4-xNx):Eu2+ green-emitting phosphors. Acta Physica Sinica, 2014, 63(19): 197801. doi: 10.7498/aps.63.197801
    [8] Luo Lin-Ling, Tang Ke, Zhu Da-Chuan, Han Tao, Zhao Cong. Effect of Li+ and Er3+ co-doping on the luminescence properties of Ba2SiO4:Eu. Acta Physica Sinica, 2013, 62(15): 157802. doi: 10.7498/aps.62.157802
    [9] Xu Xin-Wei, Cui Bi-Feng, Zhu Yan-Xu, Guo Wei-Ling, Li Wei-Guo. Research of dielectric photonic crystal on red LED to increase luminous flux. Acta Physica Sinica, 2012, 61(15): 154213. doi: 10.7498/aps.61.154213
    [10] Qian Ke-Yuan, Ma Jun, Fu Wei, Luo Yi. Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory. Acta Physica Sinica, 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [11] Wang Qian, Ci Zhi-Peng, Wang Yu-Hua, Zhu Ge, Wen Yan, Liu Bi-Tao, Que Mei-Dan. Preparation and luminescence properties of a red phosphor Mg5SnB2O10:Eu3+, Bi3+ for light emitting diode. Acta Physica Sinica, 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [12] He Wei, Zhang Yue-Pin, Wang Jin-Hao, Wang Shi-Xian, Xia Hai-Ping. Luminescence properties of terbium doped oxyfluoride tellurite glasses. Acta Physica Sinica, 2011, 60(4): 042901. doi: 10.7498/aps.60.042901
    [13] Wang Bing, Li Zhi-Cong, Yao Ran, Liang Meng, Yan Fa-Wang, Wang Guo-Hong. Optimized growth of p-type AlGaN electron blocking layer in the GaN-based LED. Acta Physica Sinica, 2011, 60(1): 016108. doi: 10.7498/aps.60.016108
    [14] Yang Zhi-Ping, Ma Xin, Zhao Pan-Pan, Song Zhao-Feng. Preparation and luminescence characteristics of SrAl2B2O7:Dy3+ phosphor. Acta Physica Sinica, 2010, 59(8): 5387-5391. doi: 10.7498/aps.59.5387
    [15] Liu Yuan-Hong, Zhuang Wei-Dong, Gao Wen-Gui, Hu Yun-Sheng, He Tao, He Hua-Qiang. Effect of H3BO3 on preparation and luminescence properties of submicron green-emitting Ca3Sc2Si3O12 ∶Ce phosphor. Acta Physica Sinica, 2010, 59(11): 8200-8204. doi: 10.7498/aps.59.8200
    [16] Ding Xu, Xu Yan, Guo Chong-Feng. Luminescence characteristics of Sr2B5O9Cl: Eu2+ phosphors for white LED. Acta Physica Sinica, 2010, 59(9): 6632-6636. doi: 10.7498/aps.59.6632
    [17] Tong Jin-Gang, Wu Chun-Fang, Wang Yu-Hua, Chen Zuo-Hui. Synthesis of nanorod GdPO4:Eu3+ phosphor and its photoluminescent properties. Acta Physica Sinica, 2009, 58(1): 585-589. doi: 10.7498/aps.58.585
    [18] Zhao Xing, Fang Zhi_Liang, Mu Guo_Guang. Study on the colorimetric properties of the LED projection sources. Acta Physica Sinica, 2007, 56(5): 2537-2540. doi: 10.7498/aps.56.2537
    [19] Li Jia-Cheng, Xue Tian-Feng, Fan You-Yu, Li Shun-Guang, Hu He-Fang. Effect of introducing Ce3+ on the emission properties of Er3+/Yb3+-doped TeO2-WO3-ZnO glasses. Acta Physica Sinica, 2006, 55(2): 923-928. doi: 10.7498/aps.55.923
    [20] Yang Zhi-Ping, Liu Yu-Feng. Preparation and luminescence characteristics of Eu2+ activated Ca3SiO5 green-emitting phosphor. Acta Physica Sinica, 2006, 55(9): 4946-4950. doi: 10.7498/aps.55.4946
Metrics
  • Abstract views:  435
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2024
  • Accepted Date:  09 August 2024
  • Available Online:  25 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回
Baidu
map