搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近紫外宽带激发LED用红色荧光粉(Gd1-xEux)6(Te1-yMoy)O12的制备与性能

吕兆承 李营 全桂英 郑庆华 周薇薇 赵旺

引用本文:
Citation:

近紫外宽带激发LED用红色荧光粉(Gd1-xEux)6(Te1-yMoy)O12的制备与性能

吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺

Preparation and photoluminescent properties of near-UV broadband-excited red phosphor (Gd1-xEux)6(Te1-yMoy)O12 for white-LEDs

Lü Zhao-Cheng, Li Ying, Quan Gui-Ying, Zheng Qing-Hua, Zhou Wei-Wei, Zhao Wang
PDF
导出引用
  • 利用高温固相法制备了一种新型红色荧光粉(Gd1-xEux)6(Te1-yMoy)O12,研究了Eu3+单掺和Eu3+,Mo6+共掺Gd6TeO12荧光粉的结构、形貌和荧光性能.实验结果表明,所合成的粉体为纯相.在393 nm近紫外光激发下,(Gd1-xEux)6(Te1-yMoy)O12荧光粉发出特征红光,位于632 nm处的发射主峰属于Eu3+的5D07F2跃迁.当Eu3+掺杂浓度超过20%(物质的量分数)时发光出现浓度淬灭,经证实这是由电偶极-电偶极相互作用造成的.随着工作温度升高,荧光粉发光强度减小,计算得到Eu3+热淬灭过程中的激活能为0.1796 eV.当(Gd0.8Eu0.2)6TeO12中共掺Mo6+(取代Te6+),该荧光粉发射光谱的峰位、强度变化不大,但是Mo3+-O2-电荷迁移态显著增大了近紫外波段的激发带宽度,可以有效提高激发效率.具有近紫外宽带激发特征的(Gd0.8Eu0.2)6(Te0.6Mo0.4) O12是一种潜在的白光LED用荧光粉材料.
    Generally, the Eu3+-activated red phosphors suffer narrow 4f-4f excitation lines ranging from near-UV to blue part of the spectrum, resulting in poor spectral overlapping with the emission spectrum of the pumping LED and low energy conversion efficiency. In this paper, the strategy of Te6+/Mo6+ mixing is adopted to enhance the excitation bandwidth of Eu3+ via the energy transfer from Mo6+-O2- charge transfer state to Eu3+, which is crucial for LED applications. A series of (Gd1-xEux)6(Te1-yMoy)O12 red phosphors are synthesized by the solid state method at 1200 ℃. The crystal structure, morphology and luminescent properties are investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescent spectrum. The XRD patterns of (Gd1-xEux)6(Te1-yMoy) O12 (x = 0.2, y = 0, 0.4) match well with that of Gd6TeO12 (JCPDS No. 50-0269), but differ from that of Gd6MoO12 (JCPDS No. 24-1085). The phosphor consists of irregular particles with an average size of 10 m. Upon excitation at 393 nm, the (Gd1-xEux)6TeO12 phosphors emit red light corresponding to the intraconfigurational 4f-4f transitions of Eu3+, and the color coordinates are calculated to be (0.647, 0.353). The 5D07F2 electron-dipole transition dominates the emission spectrum, which reveals that Eu3+ occupies a crystallographic site without an inversion center. Moreover, this transition gives rise to three distinguishable emission lines situated at 605, 618, and 632 nm, respectively. This unusual spectral splitting is supposed to originate from the strong interaction exerted by the crystal field of host on the 4f electrons. The optimum doping content of Eu3+ in (Gd1-xEux)6TeO12 phosphor is 20% (mole fraction), the critical distance for energy transfer is 0.75 nm, and the concentration quenching is confirmed to be induced by the dipole-dipole interaction from the linear relationship between lg(I/x) and lg x (I represents the luminescence intensity, and x represents the doping concentration of Eu3+). As the temperature increases, the emission intensity decreases gradually due to thermal quenching. The integrated emission intensity at 423 K is 70% of the initial value at ambient temperature. The thermal activation energy is determined to be 0.1796 eV from the temperature dependence of luminescence intensities. The partial substitution of Te6+ by Mo6+ does not change the emission position nor intensity significantly, but promotes the excitation bandwidth and conversion efficiency remarkably. Compared with (Gd0.8Eu0.2)6TeO12, the compositionoptimized (Gd0.8Eu0.2)6(Te0.6Mo0.4)O12 presents a relatively flat excitation spectrum in the near-UV region. It also provides more intense emission since (Gd0.8Eu0.2)6MoO12 undergoes the strong concentration quenching arising from the high density of [MoO6] groups. In conclusion, the results indicate that (Gd0.8Eu0.2)6(Te0.6Mo0.4)O12 can serve as a broadband-excited red phosphor for near-UV-based white LEDs.
      通信作者: 赵旺, wzhao@hnnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61205213,21201071)、安徽省自然科学基金(批准号:1708085QE91)、安徽省高等学校自然科学研究重点项目(批准号:KJ2016A673)、安徽省高校优秀青年人才支持计划重点项目(批准号:gxyqZD2016259,gxyqZD2016260)、淮南市创新团队建设计划(批准号:2016A24)和校级科学研究项目(批准号:2014xj57,2014xj09zd,2015xj11zd)资助的课题.
      Corresponding author: Zhao Wang, wzhao@hnnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205213, 21201071), the Natural Science Foundation of Anhui Province (Grant No. 1708085QE91), the Natural Science Foundation of Higher Education of Anhui Province (Grant No. KJ2016A673), the Youth Talent Support Program of Anhui Province (Grant Nos. gxyqZD2016259, gxyqZD2016260), the Innovative Team Building Project of Huainan (Grant No. 2016A24), and the Scientific Research Foundation of Huainan Normal University (Grant Nos. 2014xj57, 2014xj09zd, 2015xj11zd).
    [1]

    Pust P, Schmidit P J, Schnick W 2015 Nat. Mater. 14 454

    [2]

    Mckittick J, Shea-Rohwer L E 2014 J. Am. Ceram. Soc. 97 1327

    [3]

    Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y 2010 Mater. Sci. Eng. R. 71 1

    [4]

    Smet P F, Parmentier A B, Poelman D 2011 J. Electrochem. Soc. 158 R37

    [5]

    Peng M Y, Yin X W, Tanner P A, Brik M G, Li P F 2015 Chem. Mater. 27 2938

    [6]

    McKittrich J, Hannah M E, Piquette A, Han J K, Choi J I, Anc M, Galvez M, Lu-gauer H, Talbot J B, Mishra K C 2013 ECS J. Solid State Sci. Technol. 2 R3119

    [7]

    Liu W Q, Chao K F, Wu W J, Bao F Q, Zhou B Q 2016 Acta Phys. Sin. 65 207801 (in Chinese) [刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2016 65 207801]

    [8]

    Xie R J, Hirosaki N 2007 Sci. Technol. Adv. Mat. 8 588

    [9]

    Qin L, Wei D, Huang Y L, Sun I K, Yu Y M 2013 J. Nanopart. Res. 5 1

    [10]

    Liu Y, Wang Y, Wang L, Yu S H 2014 RSC Adv. 4 4754

    [11]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 64 107803]

    [12]

    Dutta P S, Khanna A 2013 ECS J. Solid State Sci. Technol. 2 R3153

    [13]

    Li H Y, Yang H K, Moon B K, Jeong J H 2011 Inog. Chem. 50 12522

    [14]

    Li H Y, Yang H K, Moon B K, Choi B C, Jeong J H 2011 J. Mater. Chem. 21 4531

    [15]

    Hao M R, Li G F, He W W 2013 J. Chin. Ceram. Soc. 12 1730 (in Chinese) [郝敏如, 李桂芳, 贺文文 2013 硅酸盐学报 12 1730]

    [16]

    Sha R, Gao W, Liu Y P 2013 Chinese Journal of Luminescence 34 1469 (in Chinese) [莎仁, 高娃, 刘叶平 2013 发光学报 34 1469]

    [17]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 61 107804]

    [18]

    Dou X H, Zhao W R, Song E H, Fang X B, Deng L L 2011 Proceedings of 2011 China Functional Materials Technology and Industry Forum, Chongqing, November 16-19, 2011 463 (in Chinese) [豆喜华,赵韦人,宋恩海, 方夏冰, 邓玲玲 2011 中国功能材料科技与产业高层论坛, 重庆, 11月16-19日, 2011 463]

    [19]

    Blasse G 1986 J. Solid State Chem. 62 207

    [20]

    Zhang N M, Guo C F, Zheng J M, Su X Y, Zhao J 2014 J. Mater. Chem. C 2 3988

    [21]

    Chang Y C, Liang C H, Yan S A, Chang Y S 2010 J. Phys. Chen. C 114 3645

    [22]

    Baginskiy I, Liu R S 2009 J. Electrochem. Soc. 156 G29

    [23]

    Thangaraju D, Durirajan A, Balaji D, Babu S M, Hayakawa Y 2013 J. Lumin. 134 244

  • [1]

    Pust P, Schmidit P J, Schnick W 2015 Nat. Mater. 14 454

    [2]

    Mckittick J, Shea-Rohwer L E 2014 J. Am. Ceram. Soc. 97 1327

    [3]

    Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y 2010 Mater. Sci. Eng. R. 71 1

    [4]

    Smet P F, Parmentier A B, Poelman D 2011 J. Electrochem. Soc. 158 R37

    [5]

    Peng M Y, Yin X W, Tanner P A, Brik M G, Li P F 2015 Chem. Mater. 27 2938

    [6]

    McKittrich J, Hannah M E, Piquette A, Han J K, Choi J I, Anc M, Galvez M, Lu-gauer H, Talbot J B, Mishra K C 2013 ECS J. Solid State Sci. Technol. 2 R3119

    [7]

    Liu W Q, Chao K F, Wu W J, Bao F Q, Zhou B Q 2016 Acta Phys. Sin. 65 207801 (in Chinese) [刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2016 65 207801]

    [8]

    Xie R J, Hirosaki N 2007 Sci. Technol. Adv. Mat. 8 588

    [9]

    Qin L, Wei D, Huang Y L, Sun I K, Yu Y M 2013 J. Nanopart. Res. 5 1

    [10]

    Liu Y, Wang Y, Wang L, Yu S H 2014 RSC Adv. 4 4754

    [11]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 64 107803]

    [12]

    Dutta P S, Khanna A 2013 ECS J. Solid State Sci. Technol. 2 R3153

    [13]

    Li H Y, Yang H K, Moon B K, Jeong J H 2011 Inog. Chem. 50 12522

    [14]

    Li H Y, Yang H K, Moon B K, Choi B C, Jeong J H 2011 J. Mater. Chem. 21 4531

    [15]

    Hao M R, Li G F, He W W 2013 J. Chin. Ceram. Soc. 12 1730 (in Chinese) [郝敏如, 李桂芳, 贺文文 2013 硅酸盐学报 12 1730]

    [16]

    Sha R, Gao W, Liu Y P 2013 Chinese Journal of Luminescence 34 1469 (in Chinese) [莎仁, 高娃, 刘叶平 2013 发光学报 34 1469]

    [17]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 61 107804]

    [18]

    Dou X H, Zhao W R, Song E H, Fang X B, Deng L L 2011 Proceedings of 2011 China Functional Materials Technology and Industry Forum, Chongqing, November 16-19, 2011 463 (in Chinese) [豆喜华,赵韦人,宋恩海, 方夏冰, 邓玲玲 2011 中国功能材料科技与产业高层论坛, 重庆, 11月16-19日, 2011 463]

    [19]

    Blasse G 1986 J. Solid State Chem. 62 207

    [20]

    Zhang N M, Guo C F, Zheng J M, Su X Y, Zhao J 2014 J. Mater. Chem. C 2 3988

    [21]

    Chang Y C, Liang C H, Yan S A, Chang Y S 2010 J. Phys. Chen. C 114 3645

    [22]

    Baginskiy I, Liu R S 2009 J. Electrochem. Soc. 156 G29

    [23]

    Thangaraju D, Durirajan A, Balaji D, Babu S M, Hayakawa Y 2013 J. Lumin. 134 244

  • [1] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用.  , 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [2] 禄靖雯, 赵瑾, 张永春, 涂茹婷, 刘馥妮, 冷稚华. 固态照明用Li2Gd4(MoO4)7:Sm3+橙红色荧光粉的结构和发光特性.  , 2024, 73(21): 214204. doi: 10.7498/aps.73.20241017
    [3] 罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋. 稀土掺杂Gd2Te4O11亚碲酸盐荧光粉的合成及其发光性能.  , 2023, 72(1): 017801. doi: 10.7498/aps.72.20221341
    [4] 赵旺, 平兆艳, 郑庆华, 周薇薇. 白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为.  , 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [5] 刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿. CaAlSiN3:Eu2+红色荧光粉的常压氮化制备及发光性能.  , 2016, 65(20): 207801. doi: 10.7498/aps.65.207801
    [6] 齐智坚, 黄维刚. 白光LED用Ca3Si3O9:Dy3+荧光粉的制备及其发光性能.  , 2013, 62(19): 197801. doi: 10.7498/aps.62.197801
    [7] 梁锋, 胡义华, 陈丽, 王小涓. 荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递.  , 2013, 62(18): 183302. doi: 10.7498/aps.62.183302
    [8] 徐昕伟, 崔碧峰, 朱彦旭, 郭伟玲, 李伟国. 利用介质光子晶体提高红光发光二极管的光通量的研究.  , 2012, 61(15): 154213. doi: 10.7498/aps.61.154213
    [9] 孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭. Eu3+掺杂CaWO4红色荧光粉发光性质的浓度依赖关系研究.  , 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [10] 王倩, 慈志鹏, 王育华, 朱革, 温艳, 刘碧桃, 阙美丹. Mg5SnB2O10:Eu3+, Bi3+—-一种用于发光二极管的红色荧光粉的制备及其发光性能的研究.  , 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [11] 唐红霞, 吕树臣. 发光二极管用红色荧光粉SrMoO4:Eu3+的制备和发射性质.  , 2011, 60(3): 037805. doi: 10.7498/aps.60.037805
    [12] 李盼来, 王志军, 杨志平, 郭庆林. Ba3Tb(BO3)3 ∶Ce3+:一种白光LED用绿色荧光粉.  , 2011, 60(4): 047804. doi: 10.7498/aps.60.047804
    [13] 冯晓辉, 孟庆裕, 孙江亭, 吕树臣, 孙立男. Eu3+掺杂Gd2W2O9和Gd2(WO4)3纳米荧光粉发光性质研究.  , 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [14] 王兵, 李志聪, 姚然, 梁萌, 闫发旺, 王国宏. GaN基发光二极管外延中p型AlGaN电子阻挡层的优化生长.  , 2011, 60(1): 016108. doi: 10.7498/aps.60.016108
    [15] 丁旭, 徐琰, 郭崇峰. 蓝色荧光粉Sr2B5O9Cl:Eu2+发光特性的研究.  , 2010, 59(9): 6632-6636. doi: 10.7498/aps.59.6632
    [16] 马明星, 朱达川, 涂铭旌. H3BO3对BaAl2Si2O8:Eu2+蓝色荧光粉物相组成和发光特性的影响.  , 2009, 58(9): 6512-6517. doi: 10.7498/aps.58.6512
    [17] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响.  , 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [18] 杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭. 用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2:Eu2+,Mn2+的发光性质.  , 2007, 56(1): 546-550. doi: 10.7498/aps.56.546
    [19] 赵 星, 方志良, 母国光. LED投影光源的色度学特性研究.  , 2007, 56(5): 2537-2540. doi: 10.7498/aps.56.2537
    [20] 杨殿来, 侯嫣嫣, 赵 昕, 刘贵山, 林 海, 刘 克, Edwin Yue-Bun Pun. Tm3+/Yb3+共掺铋碲酸盐玻璃中的高效蓝色上转换荧光.  , 2006, 55(8): 4304-4309. doi: 10.7498/aps.55.4304
计量
  • 文章访问数:  6703
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-02-25
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map