-
基于Mie散射理论,对大功率发光二极管封装中荧光粉的光激发、吸收、散射等作用进行数值模拟, 仿真计算在不同白光色温时前后向散射光的强度比例,研究了荧光粉的颗粒大小对白光发光二极管 最大光通量的影响.对保型荧光粉涂覆结构中不同直径荧光粉颗粒和不同色温时的光效进行了分析, 还分析了同样色温下不同荧光粉颗粒直径、涂层的厚度对白光发光二极管出光的空间色温分布均匀性的影响. 研究中所采用的器件激发光谱和发射光谱都为材料的实测光谱,而并非假设的单一光谱. 研究表明:在采用保型荧光粉涂覆结构的前提下,当荧光粉颗粒直径为0.5 μm时能使 发光二极管光通量达到最大;荧光粉颗粒越小,发光二极管空间色温分布均匀性越好; 对给定的封装结构,荧光粉涂层厚度为0.8 mm时空间色温分布均匀性最佳.
-
关键词:
- 大功率发光二极管封装 /
- 荧光粉 /
- 光通量 /
- 光色分布
Based on Mie scattering theory, the phosphor particle's scattering effect were simulated including light excitation and absorption. The light intensity proportion changes of forward and backward scattering light with different white light emitting diode (LED) color temperature were calculated. We also analyzed the phosphor particle size effecting the luminous flux of white LED and light color distribution of angle. Devices' excitation and emission spectrums used in our simulation were real measured spectrums of the material, rather than assuming a single spectrum. Our investigation discloses that when a conformal phosphor layer was adapted, phosphor particle diameter of 0.5 μm, makes maximum luminous flux and phosphor particles smaller, light color distribution of angel is better. While for given package structure, the best spatial color uniformity can be achieved with a phosphor layer thickness of 0.8 mm.-
Keywords:
- package of high power light emitting diode /
- phosphor /
- luminous flux /
- light color distribution
[1] Qian K Y, Hu F, Wu H Y 2005 Semicond. Optoelectron. 26 118 (in Chinese) [钱可元, 胡飞, 吴慧颖 2005 半导体光电 26 118]
[2] Guo X Q 2007 M. S. Dissertation (Jinan: Shandong University) (in Chinese) [郭学庆 2007 硕士学位论文 (济南:山东大学)]
[3] Xiang J S, He J H 2007 Appl. Opt. 28 363 (in Chinese) [项建胜, 何俊华 2007 应用光学 28 363]
[4] Shen J Q, Liu L 2005 China Powder Sci. Tech. 11 1 (in Chinese) [沈建琪, 刘蕾 2005 中国粉体技术 11 1]
[5] Nguyen T, Jiun P Y, Shi F G 2009 J. Lightwave Tech. 27 5145
[6] Christian S, Joachim R K, Paul H, Peter P, Marko S, Stefan T, Franz P W 2009 IEEE Sel. Top. Quantum Electron. 15 4
[7] Luo H, Jong K K, Fred S, Jaehee C, Cheolsoo S, Yongjo P 2005 Appl. Phys. 86 243505
[8] Yamada K, Imai Y, Ishii K 2003 J. Light Vis. Env. 27 10
[9] Narendran N, Gu Y, Freyssinier-Nova J P, Zhu Y 2005 Phys. Stat. Sol. A 202 R60
[10] Borbély A, Johnson S G 2004 Proceedings of the Fourth International Conference on Solid State Lighting (Bellingham: SPIE) p266
[11] Borbély A, Johnson S G 2003 Proceedings of the Third International Conference on Solid State Lighting (Bellingham: SPIE) pp301-308
[12] Kim J K, Luo H, Schubert E F, Cho J, Sone C, Park Y 2005 Jpn. J. Appl. Phys. 44 649
-
[1] Qian K Y, Hu F, Wu H Y 2005 Semicond. Optoelectron. 26 118 (in Chinese) [钱可元, 胡飞, 吴慧颖 2005 半导体光电 26 118]
[2] Guo X Q 2007 M. S. Dissertation (Jinan: Shandong University) (in Chinese) [郭学庆 2007 硕士学位论文 (济南:山东大学)]
[3] Xiang J S, He J H 2007 Appl. Opt. 28 363 (in Chinese) [项建胜, 何俊华 2007 应用光学 28 363]
[4] Shen J Q, Liu L 2005 China Powder Sci. Tech. 11 1 (in Chinese) [沈建琪, 刘蕾 2005 中国粉体技术 11 1]
[5] Nguyen T, Jiun P Y, Shi F G 2009 J. Lightwave Tech. 27 5145
[6] Christian S, Joachim R K, Paul H, Peter P, Marko S, Stefan T, Franz P W 2009 IEEE Sel. Top. Quantum Electron. 15 4
[7] Luo H, Jong K K, Fred S, Jaehee C, Cheolsoo S, Yongjo P 2005 Appl. Phys. 86 243505
[8] Yamada K, Imai Y, Ishii K 2003 J. Light Vis. Env. 27 10
[9] Narendran N, Gu Y, Freyssinier-Nova J P, Zhu Y 2005 Phys. Stat. Sol. A 202 R60
[10] Borbély A, Johnson S G 2004 Proceedings of the Fourth International Conference on Solid State Lighting (Bellingham: SPIE) p266
[11] Borbély A, Johnson S G 2003 Proceedings of the Third International Conference on Solid State Lighting (Bellingham: SPIE) pp301-308
[12] Kim J K, Luo H, Schubert E F, Cho J, Sone C, Park Y 2005 Jpn. J. Appl. Phys. 44 649
计量
- 文章访问数: 7367
- PDF下载量: 1212
- 被引次数: 0