搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaAlSiN3:Eu2+红色荧光粉的常压氮化制备及发光性能

刘文全 朝克夫 武文杰 包富泉 周炳卿

引用本文:
Citation:

CaAlSiN3:Eu2+红色荧光粉的常压氮化制备及发光性能

刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿

CaAlSiN3:Eu2+ red phosphors synthesized by atmospheric nitrogen and their luminescence properties

Liu Wen-Quan, Chao Ke-Fu, Wu Wen-Jie, Bao Fu-Quan, Zhou Bing-Qing
PDF
导出引用
  • 本文采用纳米EuB6和Eu2O3粉末为激活剂原料,提出了一步法和两步法,在常压条件下制备获得了CaAlSiN3:Eu2+红色荧光粉.对不同掺杂Eu浓度(2%10%)的样品进行了晶体结构、形貌、发光性能的分析研究.根据能谱与X射线衍射图谱(XRD)分析可知,两步法合成的样品随Eu浓度的增加晶胞体积会逐渐增大,且样品中B的含量增加;而一步法合成的样品随Eu浓度增加晶胞体积先增大后减小,且B含量相对上面的样品含量较少,O含量却较大.另外,在460 nm蓝光激发下,两步法合成的样品(纳米EuB6掺杂)的发射最强峰在652680 nm范围,而一步法合成的样品(纳米Eu2O3掺杂)的发射最强峰只在630637 nm范围,且前者的荧光相对强度都强于后者.结合XRD以及荧光光谱数据可以认为两种常压氮化制备方法都会让B元素引入到基质中,B的引入不但降低基质中O的含量,而且改变Eu2+离子的晶体场环境从而调节CaAlSiN3:Eu2+荧光粉的发光峰位.结合绿光发射荧光粉和纳米EuB6掺杂的Ca0.94AlSiN3:0.06Eu2+荧光粉在蓝光芯片激发下可以获得色温在3364 K,显色指数可以达到91的暖白发光二极管器件.本实验采用的方法简单,避免使用昂贵复杂的气压烧结设备以及还原性气体烧结设备,有望实现工业化应用以及降低生产成本.
    In this paper, we propose one-step and two-step process under atmospheric pressure condition for synthesizing the CaAlSiN3:Eu2+ red phosphors by using nano-sized EuB6 and Eu2O3 as raw doping and activator materials. Moreover, the crystal structures, morphologies and luminescence properties of different-doped-Eu-concentration (2%-10%) samples are characterized in detail. According to energy dispersive spectrometer and X-ray diffraction (XRD) results, the cell volume and B content will gradually increase with the increase of the Eu concentration (2%-10%) for the sample prepared by two-step process. In contrast, the cell volume decreases with increasing the Eu concentration for the one-step prepared sample. Meanwhile, B content in the sample is less than that in the sample mentioned above and O content becomes larger. In addition, under the 460-nm blue light excitation, the two-step synthesized samples (nano EuB6 doped) has the highest emission peak in the 652-680 nm range, however, the sample by one-step synthesis (nano Eu2O3 doped) has strong emission peak only in the 630-637 nm range. Moreover, the intensity of fluorescence of the former one is stronger than that of the latter one. Both XRD and fluorescence spectra show that boron element can be introduced into the matrix by using two-step methods under atmospheric nitrogen. The introduction of boron not only reduces the oxygen content in the matrix but also changes the crystal field around Eu ions to adjust CaAlSiN3:Eu2+ phosphor luminescence peak position. Combining XRD and fluorescence spectral analysis, it is believed that boron element is introduced into the host by the two preparation methods of atmospheric nitrogen. The introduction of boron not only reduces the oxygen content in the matrix but also changes the crystal field environment of Eu2+ ions, and thus adjusting the luminescence peak position of Ca0.94AlSiN3:Eu2+ phosphor. Blue LED excitation of combined green-emitting phosphor and Ca0.94AlSiN3:0.06Eu2+ phosphor doped with nano EuB6 can yield white LED device with a color rendering index of 91 at a corresponding color temperature of 3364 K. This work has adopted a simple method to avoid expensive and complex pressure sintering equipment, and also reduces gas sintering equipment. Therefore, it is has a good prospective in industrial application and reducing the production cost.
      通信作者: 朝克夫, phyerick@imnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51262022)、内蒙古自治区科技计划(2015年度)和内蒙古自治区科技创新引导奖励基金(2016年度)资助的课题.
      Corresponding author: Chao Ke-Fu, phyerick@imnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51262022), the Inner Mongolia Autonomous Region, China (2015), and the Inner Mongolia Autonomous Region Science and Technology Innovation Award Fund, China (2016).
    [1]

    Li X F, Budai D J, Liu F, Howe J Y, Zhang J H, Wang X J, Gu Z J, Sun C J, Richard S M, Pan Z W 2013 Light:Sci. Appl. 2 1

    [2]

    Oh J H, Yang S J, Do Y R 2014 Light:Sci. Appl. 3 1

    [3]

    Xie R J, Hirosaki N, Li YQ, Takeda T 2010 Materials 6 3777

    [4]

    Yu Y, Liu Z J, Chen Q Q, Dai N L, Li J Y, Yang L Y 2013 Acta Phys. Sin. 62 017804 (in Chinese)[余阳, 刘自军, 陈乔乔, 戴能利, 李进延, 杨旅云2013 62 017804]

    [5]

    Zhou R D, Huang X F, Qi Z J, Huang W G 2014 Acta Phys. Sin. 63 197801 (in Chinese)[周仁迪, 黄雪飞, 齐智坚, 黄维刚2014 63 197801]

    [6]

    Li H L, Xie R J, Hirosaki N, Takeda T, Zhou G H 2009 Int. J. Appl. Ceram. Technol. 6 459

    [7]

    Xie R J, Hintzen H T 2013 J. Am. Ceram. Soc. 96 665

    [8]

    Suehiro T, Xie R J, Hirosaki N 2013 Ind. Eng. Chem. Res. 52 7453

    [9]

    Wang Q Y, Yan D, Shao Q Y, Teng X M, Jiang J Q 2016 Mater. Des. 95 618

    [10]

    Zeuner M, Schmidt P J, Schnick W 2009 Chem. Mater. 21 2467

    [11]

    Piao X, Machida K, Horikawa T, Hanzawa H, Shimomura Y, Kijima N 2007 Chem. Mater. 19 4592

    [12]

    Kim H S, Machida K, Horikawa T, Hanzawa H 2015 J. Alloys Comp. 633 97

    [13]

    Li S X, Peng X, Liu X J, Huang Z R 2014 Opt. Mater. 38 242

    [14]

    Li J W, Watanabe T, Sakamoto N, Wada H S, Setoyama T, Yoshimura M 2008 Chem. Mater. 20 2095

    [15]

    Suehiro T, Hirosaki N, Xie R J, Sato T 2009 Appl. Phys. Lett. 95 1903

    [16]

    Shioi K, Michiue Y, Hirosaki N, Xie R J, Takeda T, Matsushita Y, Tanaka M, Li Y Q 2011 J. Alloys Comp. 509 332

    [17]

    Jiang J, Bian J, Li L M 2007 Chem. J. Chim. Univ. 28 2167 (in Chinese)[姜骏, 卞江, 黎乐民2007高等化学学报28 2167]

    [18]

    Bao L H, Wurentuya B, Wei W, Li Y J, Tegus O 2014 J. Alloys Comp. 617 235

    [19]

    Zhang Z J, ten Kate O M, Delsing A C A, Stevens M J H, Zhao J T, Notten P H L, Dorenbos P, Hintzen H T 2012 J. Mater. Chem. 45 23871

    [20]

    Wang T, Yang J J, Mo Y, Bian L, Song Z, Liu Q L 2013 J. Lumin. 137 173

  • [1]

    Li X F, Budai D J, Liu F, Howe J Y, Zhang J H, Wang X J, Gu Z J, Sun C J, Richard S M, Pan Z W 2013 Light:Sci. Appl. 2 1

    [2]

    Oh J H, Yang S J, Do Y R 2014 Light:Sci. Appl. 3 1

    [3]

    Xie R J, Hirosaki N, Li YQ, Takeda T 2010 Materials 6 3777

    [4]

    Yu Y, Liu Z J, Chen Q Q, Dai N L, Li J Y, Yang L Y 2013 Acta Phys. Sin. 62 017804 (in Chinese)[余阳, 刘自军, 陈乔乔, 戴能利, 李进延, 杨旅云2013 62 017804]

    [5]

    Zhou R D, Huang X F, Qi Z J, Huang W G 2014 Acta Phys. Sin. 63 197801 (in Chinese)[周仁迪, 黄雪飞, 齐智坚, 黄维刚2014 63 197801]

    [6]

    Li H L, Xie R J, Hirosaki N, Takeda T, Zhou G H 2009 Int. J. Appl. Ceram. Technol. 6 459

    [7]

    Xie R J, Hintzen H T 2013 J. Am. Ceram. Soc. 96 665

    [8]

    Suehiro T, Xie R J, Hirosaki N 2013 Ind. Eng. Chem. Res. 52 7453

    [9]

    Wang Q Y, Yan D, Shao Q Y, Teng X M, Jiang J Q 2016 Mater. Des. 95 618

    [10]

    Zeuner M, Schmidt P J, Schnick W 2009 Chem. Mater. 21 2467

    [11]

    Piao X, Machida K, Horikawa T, Hanzawa H, Shimomura Y, Kijima N 2007 Chem. Mater. 19 4592

    [12]

    Kim H S, Machida K, Horikawa T, Hanzawa H 2015 J. Alloys Comp. 633 97

    [13]

    Li S X, Peng X, Liu X J, Huang Z R 2014 Opt. Mater. 38 242

    [14]

    Li J W, Watanabe T, Sakamoto N, Wada H S, Setoyama T, Yoshimura M 2008 Chem. Mater. 20 2095

    [15]

    Suehiro T, Hirosaki N, Xie R J, Sato T 2009 Appl. Phys. Lett. 95 1903

    [16]

    Shioi K, Michiue Y, Hirosaki N, Xie R J, Takeda T, Matsushita Y, Tanaka M, Li Y Q 2011 J. Alloys Comp. 509 332

    [17]

    Jiang J, Bian J, Li L M 2007 Chem. J. Chim. Univ. 28 2167 (in Chinese)[姜骏, 卞江, 黎乐民2007高等化学学报28 2167]

    [18]

    Bao L H, Wurentuya B, Wei W, Li Y J, Tegus O 2014 J. Alloys Comp. 617 235

    [19]

    Zhang Z J, ten Kate O M, Delsing A C A, Stevens M J H, Zhao J T, Notten P H L, Dorenbos P, Hintzen H T 2012 J. Mater. Chem. 45 23871

    [20]

    Wang T, Yang J J, Mo Y, Bian L, Song Z, Liu Q L 2013 J. Lumin. 137 173

  • [1] 仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和. III族氮化物半导体及其合金的原子层沉积和应用.  , 2024, 73(3): 038102. doi: 10.7498/aps.73.20230832
    [2] 禄靖雯, 赵瑾, 张永春, 涂茹婷, 刘馥妮, 冷稚华. 固态照明用Li2Gd4(MoO4)7:Sm3+橙红色荧光粉的结构和发光特性.  , 2024, 73(21): 214204. doi: 10.7498/aps.73.20241017
    [3] 贾晓菲, 魏群, 张文鹏, 何亮, 武振华. 10 nm金属氧化物半导体场效应晶体管中的热噪声特性分析.  , 2023, 72(22): 227303. doi: 10.7498/aps.72.20230661
    [4] 罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋. 稀土掺杂Gd2Te4O11亚碲酸盐荧光粉的合成及其发光性能.  , 2023, 72(1): 017801. doi: 10.7498/aps.72.20221341
    [5] 康健彬, 李倩, 李沫. 氮化物子带跃迁探测器材料结构对器件效率的影响.  , 2019, 68(22): 228501. doi: 10.7498/aps.68.20190722
    [6] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇. 应变Si n型金属氧化物半导体场效应晶体管电荷模型.  , 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [7] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] 周仁迪, 黄雪飞, 齐智坚, 黄维刚. Ca2Si(O4-xNx):Eu2+绿色荧光粉的制备及其发光性能.  , 2014, 63(19): 197801. doi: 10.7498/aps.63.197801
    [9] 王瑨, 李春梅, 敖靖, 李凤, 陈志谦. IVB族过渡金属氮化物弹性与光学性质研究.  , 2013, 62(8): 087102. doi: 10.7498/aps.62.087102
    [10] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究.  , 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [11] 钱可元, 马骏, 付伟, 罗毅. 基于Mie散射理论的白光发光二极管荧光粉散射特性研究.  , 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [12] 屈媛, 班士良. 纤锌矿氮化物量子阱中光学声子模的三元混晶效应.  , 2010, 59(7): 4863-4873. doi: 10.7498/aps.59.4863
    [13] 杨志平, 马欣, 赵盼盼, 宋兆丰. SrAl2B2O7:Dy3+材料的制备及其发光性能.  , 2010, 59(8): 5387-5391. doi: 10.7498/aps.59.5387
    [14] 刘元红, 庄卫东, 高文贵, 胡运生, 何涛, 何华强. 硼酸对亚微米级Ca3Sc2Si3O12:Ce绿色荧光粉的制备及发光性能的影响.  , 2010, 59(11): 8200-8204. doi: 10.7498/aps.59.8200
    [15] 李伟华, 庄奕琪, 杜磊, 包军林. n型金属氧化物半导体场效应晶体管噪声非高斯性研究.  , 2009, 58(10): 7183-7188. doi: 10.7498/aps.58.7183
    [16] 马明星, 朱达川, 涂铭旌. H3BO3对BaAl2Si2O8:Eu2+蓝色荧光粉物相组成和发光特性的影响.  , 2009, 58(9): 6512-6517. doi: 10.7498/aps.58.6512
    [17] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 淀积在不同小倾角蓝宝石衬底的n型GaN的研究.  , 2009, 58(4): 2644-2648. doi: 10.7498/aps.58.2644
    [18] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级.  , 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [19] 王松有, 段国玉, 邱建红, 贾 瑜, 陈良尧. 闪锌矿结构的PtN:一种不稳定的过渡金属氮化物.  , 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [20] 杨志平, 刘玉峰. Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究.  , 2006, 55(9): 4946-4950. doi: 10.7498/aps.55.4946
计量
  • 文章访问数:  7488
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-31
  • 修回日期:  2016-07-27
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map