-
本文采用垂直Bridgman 法,分别生长了未掺杂LaCl3 和掺有不同浓度CeCl3 的LaCl3 闪烁晶体,并对它们的透光性质、发光性质和光衰减特性进行了测试和对比分析. 发现未掺杂LaCl3 晶体的吸收边位于215 nm附近,本征发射峰为405 nm,衰减时间在1 s 以上. 该发光属于纯氯化镧晶体的自陷激子发射,但随着CeCl3掺杂浓度的提高,源于自陷激子(STE) 的本征发射强度逐渐降低,LaCl3:Ce 晶体中的吸收边逐渐红移至300nm,由Ce3+ 中心所产生的5d4f 发射逐渐增强,其衰减时间加快至~20 ns. 这种现象被解释为LaCl3 晶格中的自陷激子向Ce3+ 离子发光中心的能量传递作用所致.LaCl3:Ce is an excellent rare earth halide scintillation crystal discovered in the beginning of this century. Pure LaCl3 crystal and LaCl3 crystal doped with several different Ce concentrations were grown by vertical Bridgman method. Their transmission and luminescence as well as decay time were measured and compared with each other. It was found that the cut-off edge, emission wavelength as well as decay time for pure LaCl3 crystals are respectively 215 nm, 405 nm and 1 s. This emission is explained by the self trapped exciton (STE) of LaCl3. However, with the increase of Ce concentration in the crystal, the cut-off edge of LaCl3:Ce crystal shifts to about 300 nm, and the luminescence is dominated by the emission originating from 5d-4f transition of Ce ions. Meanwhile, the increase of the luminescence intensity of Ce3+ ion emission is accompanied with the expense of STE emission, this anti-correlation between the Ce3+ and STE luminescence intensity is interpreted by the energy transfer from STE to Ce ions in LaCl3:Ce scintillation crystals.
-
Keywords:
- LaCl3:Ce /
- luminescence properties /
- doping effect /
- energy transfer
[1] Guillot-Noel O, de Haas J T M, Dorenbos P, van Eijk C W E, Kramer K, Gudel H U 1999 J. Luminescence 85 21
[2] Van Loef E V D, Dorenbos P, van Eijk C W E 2000 Applied Physics Letters 77 1467
[3] Normanda S, Iltis A, Bernard F, Domenech T, Delacour P 2007 Nucl Instr Meth Phys Res A 572 754
[4] Shah K S, Glode J, Klugerman M, Crignano L, Mose W W, EDerenzo S, Weber M J 2003 Nucl Instr Meth Phys Res A 505 76
[5] Masahiro Tsutsumi, Yoshihiko Tanimura 2006 Nucl Instr Meth Phys Res A 557 554
[6] Iltis A, Mayhugh M R, Menge P, Rozsa C M, Selles O, Solovyev V 2006 Nucl Instr Meth Phys Res A 563 359
[7] van Loef E V D, Dorenbos P, van Eijk C W E, Kramer K, Gudel H U 2001 IEEE Trans. Nucl. Sci. 48 341
[8] Ren G H, Pei Y U, Chen X F 2009 Journal of Alloys and Compounds 467 120
[9] Bizarri G, Dorenbos P 2009 J. Phys.: Condens. Matter 21 235605
[10] Wang D Y, Xie P P, Zhang W P, Lou L R, Xia S D, 2001 Acta Phys. Sin. 50 329 (in Chinese) [王殿元, 谢平波, 张蔚萍, 楼立人, 夏上达 2001 50 329]
[11] Kramer K W, Dorenbos P, Gudel H U, van Eijk C W E 2006 J. Mater. Chem. 16 2773
-
[1] Guillot-Noel O, de Haas J T M, Dorenbos P, van Eijk C W E, Kramer K, Gudel H U 1999 J. Luminescence 85 21
[2] Van Loef E V D, Dorenbos P, van Eijk C W E 2000 Applied Physics Letters 77 1467
[3] Normanda S, Iltis A, Bernard F, Domenech T, Delacour P 2007 Nucl Instr Meth Phys Res A 572 754
[4] Shah K S, Glode J, Klugerman M, Crignano L, Mose W W, EDerenzo S, Weber M J 2003 Nucl Instr Meth Phys Res A 505 76
[5] Masahiro Tsutsumi, Yoshihiko Tanimura 2006 Nucl Instr Meth Phys Res A 557 554
[6] Iltis A, Mayhugh M R, Menge P, Rozsa C M, Selles O, Solovyev V 2006 Nucl Instr Meth Phys Res A 563 359
[7] van Loef E V D, Dorenbos P, van Eijk C W E, Kramer K, Gudel H U 2001 IEEE Trans. Nucl. Sci. 48 341
[8] Ren G H, Pei Y U, Chen X F 2009 Journal of Alloys and Compounds 467 120
[9] Bizarri G, Dorenbos P 2009 J. Phys.: Condens. Matter 21 235605
[10] Wang D Y, Xie P P, Zhang W P, Lou L R, Xia S D, 2001 Acta Phys. Sin. 50 329 (in Chinese) [王殿元, 谢平波, 张蔚萍, 楼立人, 夏上达 2001 50 329]
[11] Kramer K W, Dorenbos P, Gudel H U, van Eijk C W E 2006 J. Mater. Chem. 16 2773
计量
- 文章访问数: 6692
- PDF下载量: 547
- 被引次数: 0