-
In order to observe the extraordinary optical transmission (EOT) through a metal gratings, induced by Tamm plasmon polaritons (TPPs), a layered structure consisting of a distributed Bragg reflector covered with a one-dimensional metal grating is proposed in this work. When an incident light wave passes through DBR regime and impinges on the DBR-metal interface normally, the generation of TPPs and the resulting highly localized energy on the metal-DBR interface are simulated in detail by the finite element method. As a result, the surface plasmon polariton (SPPs) modes accommodated inside the slits of metal gratings can be excited more effectively by the enhanced electromagnetic field associated with TPPs located on the interface. Furthermore, the enhanced transmission of incident light waves in the structure can be achieved when the SPP mode inside the grating slits satisfies the Fabry-Perot (FP)-like resonance condition, which reveals that the EOT in this structure comes from a TPPs-FP hybrid resonance. This inference can be confirmed by the relationships between the central wavelength and the grating height for the two transmission peaks, and the magnetic field modal profiles associated with the two peaks. Quantitative effects of the slit width and duty cycle on the transmission peak of the metal grating are analyzed numerically, and the results demonstrate that when the period is determined, as the slits width increases, the two peak transmittances first increase and then decrease. On the other hand, when the slit widths are chosen to be 40 nm, 50 nm, and 60 nm respectively, the peak transmittance first increases and then decreases with the duty cycle increasing. Meanwhile, it is found that the center wavelengths of the transmission peaks are related to the duty cycle in a nearly linear manner for three slit widths, which can be used to flexibly adjust the center wavelength of extraordinary optical transmission.
-
Keywords:
- extraordinary optical transmission /
- metal grating /
- Tamm plasmon polaritons /
- quasi Fabry-Perot resonance
[1] Ebbesen T W, Lezee H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar
[2] Ghaemi H F, Thio Tineke, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779Google Scholar
[3] Martín-Moreno L, García-Vidal F J, Lezec H J, PellerinK M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114Google Scholar
[4] Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401Google Scholar
[5] 张鑫, 刘海涛 2016 物理学进展 36 118
Zhang X, Liu H T 2016 Prog. Phys. 36 118
[6] Takakura Y 2001 Phys. Rev. Lett. 86 5601Google Scholar
[7] Ruan Z C, Qiu M 2006 Phys Rev. Lett. 96 233901Google Scholar
[8] 聂俊英, 张宛, 罗李娜, 李贵安, 郑海荣, 张中月 2015 中国科学: 物理学 力学 天文学 45 024202Google Scholar
Nie J Y, Zhang W, Luo L N, Li G A, Zheng H R, Zhang Z Y 2015 Sci. Sin-Phys. Mech Astron. 45 024202Google Scholar
[9] Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar
[10] 王振林 2009 物理学进展 29 287Google Scholar
Wang Z L 2009 Prog. Phys. 29 287Google Scholar
[11] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415Google Scholar
[12] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram A, Chamberlain J M, Egorov A Yu, Vasilev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112Google Scholar
[13] Zhou H C, Yang G, Wang K, Long H, Lu P X 2010 Opt. Lett. 35 4112Google Scholar
[14] Afinogenov B I, Bessonov V O, Nikulin A A, Fedyanin A A 2013 Appl. Phys. Lett. 103 061112Google Scholar
[15] Das R, Srivastava T, Jha R 2014 Opt. Lett. 39 896Google Scholar
[16] Das D, Bover P, Salvi J 2021 Appl. Opt. 60 4738Google Scholar
[17] 陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 65 204207Google Scholar
Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207Google Scholar
[18] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤 2018 67 107104Google Scholar
Qi Y P, Zhou P Y, Zhang X W, Yan C M, Wang X X 2018 Acta Phys. Sin. 67 107104Google Scholar
[19] García-Vidal F J, Lezec H J, Ebbesen T W, Martín-Moreno L 2003 Phys. Rev. Lett. 90 213901Google Scholar
[20] 丁冠天, 关建飞, 陈陶, 陆云清 2023 光学学报 43 1428002Google Scholar
Ding G T, Guan J F, Chen T, Lu Y Q 2023 Acta Opt. Sin. 43 1428002Google Scholar
[21] Gordon R 2006 Phys. Rev. B 73 153405Google Scholar
-
图 3 1040 nm光波入射到金属银覆盖DBR结构及金属银覆盖TIO2中的能量分布 (a) 周期单元模场分布图; (b) z轴方向磁场截线图
Figure 3. Energy distribution in the silver covered DBR structure and silver capped TiO2 dielectric generated by the incident light wave of 1040 nm: (a)Magnetic field $ \left| {{H_y}} \right| $ distribution at λ = 1040 nm; (b) magnetic field $ \left| {{H_y}} \right| $ profile along z axis.
图 6 (a) 透射率随金属光栅高度的变化关系; (b) 透射峰值处的模场分布图
Figure 6. (a) The transmittance as a function of the grating heights for TM polarization; (b) magnetic field intensity distributions for the four transmission peaks depicted in Fig. 6(a).
-
[1] Ebbesen T W, Lezee H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar
[2] Ghaemi H F, Thio Tineke, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779Google Scholar
[3] Martín-Moreno L, García-Vidal F J, Lezec H J, PellerinK M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114Google Scholar
[4] Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401Google Scholar
[5] 张鑫, 刘海涛 2016 物理学进展 36 118
Zhang X, Liu H T 2016 Prog. Phys. 36 118
[6] Takakura Y 2001 Phys. Rev. Lett. 86 5601Google Scholar
[7] Ruan Z C, Qiu M 2006 Phys Rev. Lett. 96 233901Google Scholar
[8] 聂俊英, 张宛, 罗李娜, 李贵安, 郑海荣, 张中月 2015 中国科学: 物理学 力学 天文学 45 024202Google Scholar
Nie J Y, Zhang W, Luo L N, Li G A, Zheng H R, Zhang Z Y 2015 Sci. Sin-Phys. Mech Astron. 45 024202Google Scholar
[9] Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar
[10] 王振林 2009 物理学进展 29 287Google Scholar
Wang Z L 2009 Prog. Phys. 29 287Google Scholar
[11] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415Google Scholar
[12] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram A, Chamberlain J M, Egorov A Yu, Vasilev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112Google Scholar
[13] Zhou H C, Yang G, Wang K, Long H, Lu P X 2010 Opt. Lett. 35 4112Google Scholar
[14] Afinogenov B I, Bessonov V O, Nikulin A A, Fedyanin A A 2013 Appl. Phys. Lett. 103 061112Google Scholar
[15] Das R, Srivastava T, Jha R 2014 Opt. Lett. 39 896Google Scholar
[16] Das D, Bover P, Salvi J 2021 Appl. Opt. 60 4738Google Scholar
[17] 陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 65 204207Google Scholar
Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207Google Scholar
[18] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤 2018 67 107104Google Scholar
Qi Y P, Zhou P Y, Zhang X W, Yan C M, Wang X X 2018 Acta Phys. Sin. 67 107104Google Scholar
[19] García-Vidal F J, Lezec H J, Ebbesen T W, Martín-Moreno L 2003 Phys. Rev. Lett. 90 213901Google Scholar
[20] 丁冠天, 关建飞, 陈陶, 陆云清 2023 光学学报 43 1428002Google Scholar
Ding G T, Guan J F, Chen T, Lu Y Q 2023 Acta Opt. Sin. 43 1428002Google Scholar
[21] Gordon R 2006 Phys. Rev. B 73 153405Google Scholar
Catalog
Metrics
- Abstract views: 1638
- PDF Downloads: 52
- Cited By: 0