搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层金属纳米光栅的TE偏振光异常透射特性

褚金奎 王倩怡 王志文 王立鼎

引用本文:
Citation:

双层金属纳米光栅的TE偏振光异常透射特性

褚金奎, 王倩怡, 王志文, 王立鼎

Extraordinary optical transmission through bilayer metallic nano-grating for s-polarization light

Chu Jin-Kui, Wang Qian-Yi, Wang Zhi-Wen, Wang Li-Ding
PDF
导出引用
  • 根据在亚波长金属光栅表面添加电介质会引起TE偏振光的透射异常性, 应用严格耦合波理论和时域有限差分方法, 研究了双层金属纳米光栅在TE偏振光入射时产生的异常透射现象. 利用等效折射率方法建立了双层金属光栅的等效模型, 得到了TE偏振光透射率与聚合物的折射率、厚度以及金属层厚度的变化关系. 确认了结构中聚合物是透射异常出现的必要条件, TE偏振光以波导电磁模式在其中传播, 并认为类Fabry-Perot腔谐振是透射峰值产生的主要原因.
    Based on the phenomenon of the s-polarization extraordinary optical transmission through subwavelength metallic grating on a dielectric film, the same phenomenon in bilayer metallic nano-grating has been found. In order to analyze the s-polarization transmission in this specific structure, the rigorous coupled-wave analysis and finite-different time-domain method is applied: the former is used for analyzing the transmission of the structure exactly and the latter is used for acquiring the optical field distribution of the structure. Using the equivalent refractive method, the equivalent mechanical model of the bilayer metallic grating is founded, which is as much of extraordinary optical transmission as the original model, to discover the relationship between the polymer and the s-polarization transmission. The comparison of distribution of field-intensity for two bilayer structures, with or without the polymer, illustrates that the existence of the polymer is the main reason to the s-polarization transmission peak appearance. Because the existence of the polymer can be treated as a waveguide and the s-polarization is coupled by metal grating and then turns to a surface wave, there is a resonant phenomenon occurred in the polymer area under the incident light with particular wavelength. In addition, the effect of geometrical parameters of the polymer, such as the refractive index and the thickness of the polymer, the effect of the thickness of the metal film on s-polarization transmittance are discussed. Increasing the refractive index of the polymer leads to the red shift of transmission peak both in the original bilayer model and the equivalent model, which indicates that the two models have the same property. The transmission peak can be explained by the Fabry-Perot-like resonance, and the red shift of transmission peak is result from the change of the resonance condition due to the refractive index increase. The polymer thickness increase results in the addition of the resonance modes and the corresponding transmission peaks. The cycle of the peak is calculated and the result is similar to the length of the Fabry-Perot-like cavity. However, the thickness of metal layer does not impact the position of the s-polarization transmission peak. In conclusion, the polymer which sustains a waveguide elecromagnetic mode is necessary for the extraordinary optical transmission, and the existence of Fabry-Perot-like resonance in the polymer film is the main reason of the resonant peak appearing.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB302101, 2011CB302105)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB302101, 2011CB302105).
    [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Porto J A, Garcia-Vidal F J, Pendry J B 1999 Phys. Rev. Lett. 83 2845

    [3]

    Treacy M M J 2002 Phys. Rev B: Condens. Matter 66 195105

    [4]

    Lee K G, Park Q H 2005 Phys. Rev. Lett. 95 103902

    [5]

    Liu H, Lalanne P 2008 Nature 452 728

    [6]

    Xie Y, Zakharian A, Moloney J, Mansuripur M 2005 Opt. Express 13 4485

    [7]

    Takakura Y 2001 Phys. Rev. Lett. 86 5601

    [8]

    Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063 (in Chinese) [谈春雷, 易永祥, 汪国平 2002 51 1063]

    [9]

    García-Vidal F J, Martin-Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [10]

    Lochbihler H, Depine R A 2012 Appl. Opt. 51 1729

    [11]

    Wei F F, Wang H Y, Zhou Y S 2013 Chin. Phys. B 22 024201

    [12]

    Moreno E, Martín-Moreno L, García-Vidal F J 2006 J Opt A: Pure Appl. Opt. 8 S94

    [13]

    Yuan G H, Wang P, Zhang D G, Jiao X J, Min C J, Ming H 2007 Chin. Phys. Lett. 24 1600

    [14]

    Guillaumée M, Nikitin A Y, Klein M J K, et al. 2010 Opt. Express 18 9722

    [15]

    Wang Y W, Liu M L, Liu R J, Lei H N, Deng X B 2010 Acta Phys. Sin. 59 4030 (in Chinese) [王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌 2010 59 4030]

    [16]

    Wang Y W, Liu M L, Liu R J, Lei H N, Tian X L 2011 Acta Phys. Sin. 60 024217 (in Chinese) [王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙 2011 60 024217]

    [17]

    Sun Z J, Zuo X L, Guan T P, Chen W 2014 Opt. Express 22 4714

    [18]

    Gao H, Zheng Z Y, Dong A G, Fan Z J 2014 Optik 125 6687

    [19]

    Ekinci Y, Solak H H, David C, Sigg H 2006 Opt. Express 14 2323

    [20]

    Meng F T, Luo G, Maximov I, Montelius L, Chu J K, Xu H 2011 Microelectron. Eng. 88 3108

    [21]

    Chu J K, Wang Z W, Guan L, Liu Z, Wang Y L, Zhang R 2014 IEEE Photon. Technol. Lett. 26 469

    [22]

    Moharam M G, Gaylord T K 1981 JOSA 71 811

    [23]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [24]

    Li H R 1990 Introduction to Diectric Physics (Chengdu: Press of Chengdu University of Science and Technology) pp323-331 (in Chinese) [李翰如 1990 电介质物理学导论 (成都: 成都科技大学出版社) 第323–331页]

    [25]

    Jing X F, Jin Y X 2011 Appl. Opt. 50 C11

  • [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Porto J A, Garcia-Vidal F J, Pendry J B 1999 Phys. Rev. Lett. 83 2845

    [3]

    Treacy M M J 2002 Phys. Rev B: Condens. Matter 66 195105

    [4]

    Lee K G, Park Q H 2005 Phys. Rev. Lett. 95 103902

    [5]

    Liu H, Lalanne P 2008 Nature 452 728

    [6]

    Xie Y, Zakharian A, Moloney J, Mansuripur M 2005 Opt. Express 13 4485

    [7]

    Takakura Y 2001 Phys. Rev. Lett. 86 5601

    [8]

    Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063 (in Chinese) [谈春雷, 易永祥, 汪国平 2002 51 1063]

    [9]

    García-Vidal F J, Martin-Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [10]

    Lochbihler H, Depine R A 2012 Appl. Opt. 51 1729

    [11]

    Wei F F, Wang H Y, Zhou Y S 2013 Chin. Phys. B 22 024201

    [12]

    Moreno E, Martín-Moreno L, García-Vidal F J 2006 J Opt A: Pure Appl. Opt. 8 S94

    [13]

    Yuan G H, Wang P, Zhang D G, Jiao X J, Min C J, Ming H 2007 Chin. Phys. Lett. 24 1600

    [14]

    Guillaumée M, Nikitin A Y, Klein M J K, et al. 2010 Opt. Express 18 9722

    [15]

    Wang Y W, Liu M L, Liu R J, Lei H N, Deng X B 2010 Acta Phys. Sin. 59 4030 (in Chinese) [王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌 2010 59 4030]

    [16]

    Wang Y W, Liu M L, Liu R J, Lei H N, Tian X L 2011 Acta Phys. Sin. 60 024217 (in Chinese) [王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙 2011 60 024217]

    [17]

    Sun Z J, Zuo X L, Guan T P, Chen W 2014 Opt. Express 22 4714

    [18]

    Gao H, Zheng Z Y, Dong A G, Fan Z J 2014 Optik 125 6687

    [19]

    Ekinci Y, Solak H H, David C, Sigg H 2006 Opt. Express 14 2323

    [20]

    Meng F T, Luo G, Maximov I, Montelius L, Chu J K, Xu H 2011 Microelectron. Eng. 88 3108

    [21]

    Chu J K, Wang Z W, Guan L, Liu Z, Wang Y L, Zhang R 2014 IEEE Photon. Technol. Lett. 26 469

    [22]

    Moharam M G, Gaylord T K 1981 JOSA 71 811

    [23]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [24]

    Li H R 1990 Introduction to Diectric Physics (Chengdu: Press of Chengdu University of Science and Technology) pp323-331 (in Chinese) [李翰如 1990 电介质物理学导论 (成都: 成都科技大学出版社) 第323–331页]

    [25]

    Jing X F, Jin Y X 2011 Appl. Opt. 50 C11

  • [1] 相阳, 郑军, 李春雷, 王小明, 袁瑞旸. 圆偏振光场调控的锡烯纳米带热自旋输运.  , 2021, 70(14): 147301. doi: 10.7498/aps.70.20210197
    [2] 吴芳, 步扬, 刘志帆, 王少卿, 李思坤, 王向朝. 深紫外双层金属光栅偏振器的设计与分析.  , 2021, 70(4): 044203. doi: 10.7498/aps.70.20201403
    [3] 张翔宇, 刘会刚, 康明, 刘波, 刘海涛. 金属-介质-金属多层结构可调谐Fabry-Perot共振及高灵敏折射率传感.  , 2021, 70(14): 140702. doi: 10.7498/aps.70.20202058
    [4] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究.  , 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [5] 李宏, 张斯淇, 郭明, 李美萱, 宋立军. Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞.  , 2019, 68(12): 124203. doi: 10.7498/aps.68.20190154
    [6] 陈聿, 刘垄, 黄忠, 屠林林, 詹鹏. 一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强.  , 2016, 65(14): 147302. doi: 10.7498/aps.65.147302
    [7] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线.  , 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [8] 白岩, 赵卫疆, 任德明, 曲彦臣, 刘闯, 袁晋鹤, 钱黎明, 陈振雷. 基于有源Fabry-Perot腔的激光脉冲延时自外差研究.  , 2012, 61(9): 094218. doi: 10.7498/aps.61.094218
    [9] 王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂. 单光子调制锁定Fabry-Perot腔.  , 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [10] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器.  , 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [11] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙. Fabry-Perot腔谐振对横电波激励下亚波长一维金属光栅的异常透射性的作用.  , 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [12] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究.  , 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [13] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦.  , 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [14] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌. 横电波激励下亚波长一维金属光栅的异常透射性.  , 2010, 59(6): 4030-4035. doi: 10.7498/aps.59.4030
    [15] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究.  , 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [16] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究.  , 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [17] 邱昆, 武保剑, 文峰. 磁光光纤Bragg光栅中圆偏振光的非线性传输特性.  , 2009, 58(3): 1726-1730. doi: 10.7498/aps.58.1726
    [18] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换.  , 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [19] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究.  , 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [20] 李永贵, 张洪钧, 杨君慧, 高存秀. 混合型非线性Fabry-Perot标准具的光学双稳特性.  , 1982, 31(4): 446-459. doi: 10.7498/aps.31.446
计量
  • 文章访问数:  6472
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-23
  • 修回日期:  2015-03-16
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map