-
Lithium-oxygen batteries stand out among post-lithium-ion batteries due to their theoretically high energy density, while the sluggish reaction kinetics of lithium peroxide reduces the rate performance of the batteries. Therefore, improving the reaction kinetics of the lithium peroxide and then lowering the charge overpotential are of great importance for realizing reversible lithium-oxygen batteries with high energy density. In this work, the catalytic mechanism of graphene oxide (GO) and boron-doped graphene oxide (BGO) on the oxygen evolution reaction of (Li2O2)2 cluster is investigated by first-principles calculations. The results show that the charge transfer from (Li2O2)2 cluster to GO and from (Li2O2)2 cluster to BGO are 0.59 e and 0.96 e, respectively, suggests that B doping improves the charge transfer from the discharged product to the cathode material. The Gibbs free energy of the 4-electron decomposition process shows that the (Li2O2)2 cluster favors the Li-O2-Li decomposition pathway, and the rate-determining step for the reaction on both GO and BGO is the third step, that is, the removal of the third lithium. At the equilibrium potential, the charge overpotential of GO and BGO are 0.76 V and 0.23 V, respectively, showing that B doping greatly reduces the charging overpotential of lithium-oxygen batteries. Moreover, mechanistic analysis shows that B doping enhances the electronic conductance of GO and forms an electron-deficient active center, which facilitates charge transport in cathode and charge transfer from lithium peroxide to cathode materials, thereby reducing the charging overpotential of the lithium-oxygen batteries and improving its cycling performance. The B and O play a synergistic role in catalyzing the oxygen evolution reaction of (Li2O2)2 clusters.
-
Keywords:
- lithium-oxygen batteries /
- oxygen evolution reaction /
- B-doped graphene oxide /
- first-principles
[1] Liu T, Zhao S Y, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X B 2023 Adv. Mater. 35 2208925Google Scholar
[2] Hou X Y, Rong X H, Lu Y X, Hu Y S 2022 Chin. Phys. B 31 098801Google Scholar
[3] Guo Q, Han S, Lu Y X, Chen L, Hu Y S 2023 Chin. Phys. Lett. 40 028801Google Scholar
[4] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜 2022 71 108801Google Scholar
Ding F X, Rong X H, Wang H B, Yang Y, Hu Z L, Dang R B, Lu Y X, Hu Y S 2022 Acta Phys. Sin. 71 108801Google Scholar
[5] Zhao W Y, Xu L C, Guo Y H, Yang Z, Liu R P, Li X Y 2022 Chin. Phys. B 31 047101Google Scholar
[6] Aurbach D, Mccloskey B D, Nazar L F, Bruce P G 2016 Nat. Energy 1 16128Google Scholar
[7] Zhang X P, Mu X W, Yang S X, Wang P F, Guo S H, Han M, He P, Zhou H S 2018 Energy Environ. Mater. 1 61Google Scholar
[8] Zhang T, Wu N, Zhao Y, Zhang X, Wu J, Weng J, Li S, Huo F W, Huang W 2022 Adv. Sci. 9 e2103954Google Scholar
[9] Wu Z Z, Tian Y H, Chen H, Wang L G, Qian S S, Wu T P, Zhang S Q, Lu J 2022 Chem. Soc. Rev. 51 8045Google Scholar
[10] Kwak W J, Rosy, Sharon D, Xia C, Kim H, Johnson L R, Bruce P G, Nazar L F, Sun Y K, Frimer A A, Noked M, Freunberger S A, Aurbach D 2020 Chem. Rev. 120 6626Google Scholar
[11] Chen K, Yang D Y, Huang G, Zhang X B 2021 Acc. Chem. Res. 54 632Google Scholar
[12] Peng Z, Freunberger S A, Chen Y, Bruce P G 2012 Science 337 563Google Scholar
[13] Lyu Z Y, Zhou Y, Dai W R, Cui X H, Lai M, Wang L, Huo F W, Huang W, Hu Z, Chen W 2017 Chem. Soc. Rev. 46 6046Google Scholar
[14] Kang J H, Lee J, Jung J W, Park J, Jang T, Kim H S, Nam J S, Lim H, Yoon K R, Ryu W H, Kim I D, Byon H R 2020 ACS Nano 14 14549Google Scholar
[15] Hummelshoj J S, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen K S, Luntz A C, Jacobsen K W, Norskov J K 2010 J. Chem. Phys. 132 071101Google Scholar
[16] Kang J, Jung Y S, Wei S H, Dillon A C 2012 Phys. Rev. B 85 035210Google Scholar
[17] Assary R S, Lau K C, Amine K, Sun Y K, Curtiss L A 2013 J. Phys. Chem. C 117 8041Google Scholar
[18] Mccloskey B D, Scheffler R, Speidel A, Bethune D S, Shelby R M, Luntz A C 2011 J. Am. Chem. Soc. 133 18038Google Scholar
[19] Freunberger S A, Chen Y, Peng Z, Griffin J M, Hardwick L J, Barde F, Novak P, Bruce P G 2011 J. Am. Chem. Soc. 133 8040Google Scholar
[20] Mo Y, Ong S P, Ceder G 2011 Phys. Rev. B 84 205446Google Scholar
[21] Debart A, Paterson A J, Bao J, Bruce P G 2008 Angew. Chem. Int. Ed. Engl. 47 4521Google Scholar
[22] Yu Y, Zhang B, He Y B, Huang Z D, Oh S W, Kim J K 2013 J. Mater. Chem. A 1 1163Google Scholar
[23] Debart A, Bao J, Armstrong G, Bruce P G 2007 J. Power Sources 174 1177Google Scholar
[24] Black R, Lee J H, Adams B, Mims C A, Nazar L F 2013 Angew. Chem. Int. Ed. Engl. 52 392Google Scholar
[25] Cui Y, Wen Z, Liu Y 2011 Energy Environ. Sci. 4 4727Google Scholar
[26] Zhu J, Ren X, Liu J, Zhang W, Wen Z 2015 Acs Catalysis 5 73Google Scholar
[27] Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Jung S K, Kim T, Kim Y H, Lepro X, Ovalle Robles R, Baughman R H, Kang K 2013 Energy Environ. Sci. 6 3570Google Scholar
[28] Lu Y C, Xu Z, Gasteiger H A, Chen S, Hamad Schifferli K, Shao Horn Y 2010 J. Am. Chem. Soc. 132 12170Google Scholar
[29] Li F J, Tang D M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H S 2013 Nano Lett. 13 4702Google Scholar
[30] Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J 2013 ACS Nano 7 3532Google Scholar
[31] Cai F, Lei X L 2023 Appl. Surf. Sci. 609 155331Google Scholar
[32] Cai F, Lei X L, Ke Q, Ouyang C Y 2023 J. Phys. Chem. C 127 14232Google Scholar
[33] Sun B, Huang X D, Chen S Q, Munroe P, Wang G X 2014 Nano Lett. 14 3145Google Scholar
[34] Yoo E, Zhou H S 2011 ACS Nano 5 3020Google Scholar
[35] Zhang Y, Ge J, Wang L, Wang D, Ding F, Tao X, Chen W 2013 Sci. Rep. 3 2771Google Scholar
[36] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英 2019 68 128801Google Scholar
Hou B P, Gan Z L, Lei X L, Zhong S Y, Xu B, Ouyang C Y 2019 Acta Phys. Sin. 68 128801Google Scholar
[37] Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Lee C S 2012 ACS Nano 6 1970Google Scholar
[38] Wang H, Zhou Y, Wu D, Liao L, Zhao S L, Peng H L, Liu Z F 2013 Small 9 1316Google Scholar
[39] Ren X D, Zhu J Z, Du F, Liu J J, Zhang W Q 2014 J. Phys. Chem. C 118 22412Google Scholar
[40] Ren X D, Wang B Z, Zhu J Z, Liu J J, Zhang W Q, Wen Z Y 2015 Phys. Chem. Chem. Phys. 17 14605Google Scholar
[41] Hou B P, Lei X L, Zhong S Y, Sun B Z, Ouyang C Y 2020 Phys. Chem. Chem. Phys. 22 14216Google Scholar
[42] Salehi M, Shariatinia Z, Sadeghi A 2019 J. Electroanal. Chem. 832 165Google Scholar
[43] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[44] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[45] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[46] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[47] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar
[48] Topsakal M, Ciraci S 2012 Phys. Rev. B 86 205402Google Scholar
-
图 1 氧化石墨烯和硼掺杂氧化石墨烯的几何结构和电子性质 (a), (b)几何结构, 灰色、红色和粉色小球分别代表C, O和B原子; (c), (d)电子性质, C1, C2和C3与结构图中相一致, 图中插入的是总态密度
Figure 1. Geometric structure and electronic properties of oxide graphene (GO) and B doped oxide graphene (BGO): (a), (b) Geometric structures, grey, red and pink balls represent the C, O and B atoms, respectively; (c), (d) electronic properties, C1, C2 and C3 are consistent with those in the geometric structures, the insert is total density of states (TDOS).
图 2 氧化石墨烯和硼掺杂氧化石墨烯的电荷密度差分和电子局域密度 (a), (b)电荷密度差分, 黄色和蓝色区域分别表示电荷聚积和电荷消失, 电荷等值面为0.004 e/Å3; (c), (d) 电子局域密度, 从红色到蓝色表示电子由多到少
Figure 2. Charge density difference and electron localization function (ELF) of GO and BGO: (a), (b) Charge density difference, yellow and blue indicate the gain and the loss of electrons, and the isosurface value is 0.004 e/Å3; (c), (d) electron localization function, red to blue indicates more to less electrons.
图 3 (Li2O2)2团簇在氧化石墨烯(a)和硼掺杂氧化石墨烯(b)上吸附的俯视图和侧视图以及电荷转移, 箭头表示电荷转移方向, 青色和绿色分别代表(Li2O2)2团簇的O原子和Li原子
Figure 3. Top view and side view of (Li2O2)2 cluster adsorbed on the GO (a) and BGO catalysts (b) along with the charge transfer, arrows indicate the direction of charge transfer. The cyan and green represent the O and Li atoms in the (Li2O2)2 cluster, respectively.
-
[1] Liu T, Zhao S Y, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X B 2023 Adv. Mater. 35 2208925Google Scholar
[2] Hou X Y, Rong X H, Lu Y X, Hu Y S 2022 Chin. Phys. B 31 098801Google Scholar
[3] Guo Q, Han S, Lu Y X, Chen L, Hu Y S 2023 Chin. Phys. Lett. 40 028801Google Scholar
[4] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜 2022 71 108801Google Scholar
Ding F X, Rong X H, Wang H B, Yang Y, Hu Z L, Dang R B, Lu Y X, Hu Y S 2022 Acta Phys. Sin. 71 108801Google Scholar
[5] Zhao W Y, Xu L C, Guo Y H, Yang Z, Liu R P, Li X Y 2022 Chin. Phys. B 31 047101Google Scholar
[6] Aurbach D, Mccloskey B D, Nazar L F, Bruce P G 2016 Nat. Energy 1 16128Google Scholar
[7] Zhang X P, Mu X W, Yang S X, Wang P F, Guo S H, Han M, He P, Zhou H S 2018 Energy Environ. Mater. 1 61Google Scholar
[8] Zhang T, Wu N, Zhao Y, Zhang X, Wu J, Weng J, Li S, Huo F W, Huang W 2022 Adv. Sci. 9 e2103954Google Scholar
[9] Wu Z Z, Tian Y H, Chen H, Wang L G, Qian S S, Wu T P, Zhang S Q, Lu J 2022 Chem. Soc. Rev. 51 8045Google Scholar
[10] Kwak W J, Rosy, Sharon D, Xia C, Kim H, Johnson L R, Bruce P G, Nazar L F, Sun Y K, Frimer A A, Noked M, Freunberger S A, Aurbach D 2020 Chem. Rev. 120 6626Google Scholar
[11] Chen K, Yang D Y, Huang G, Zhang X B 2021 Acc. Chem. Res. 54 632Google Scholar
[12] Peng Z, Freunberger S A, Chen Y, Bruce P G 2012 Science 337 563Google Scholar
[13] Lyu Z Y, Zhou Y, Dai W R, Cui X H, Lai M, Wang L, Huo F W, Huang W, Hu Z, Chen W 2017 Chem. Soc. Rev. 46 6046Google Scholar
[14] Kang J H, Lee J, Jung J W, Park J, Jang T, Kim H S, Nam J S, Lim H, Yoon K R, Ryu W H, Kim I D, Byon H R 2020 ACS Nano 14 14549Google Scholar
[15] Hummelshoj J S, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen K S, Luntz A C, Jacobsen K W, Norskov J K 2010 J. Chem. Phys. 132 071101Google Scholar
[16] Kang J, Jung Y S, Wei S H, Dillon A C 2012 Phys. Rev. B 85 035210Google Scholar
[17] Assary R S, Lau K C, Amine K, Sun Y K, Curtiss L A 2013 J. Phys. Chem. C 117 8041Google Scholar
[18] Mccloskey B D, Scheffler R, Speidel A, Bethune D S, Shelby R M, Luntz A C 2011 J. Am. Chem. Soc. 133 18038Google Scholar
[19] Freunberger S A, Chen Y, Peng Z, Griffin J M, Hardwick L J, Barde F, Novak P, Bruce P G 2011 J. Am. Chem. Soc. 133 8040Google Scholar
[20] Mo Y, Ong S P, Ceder G 2011 Phys. Rev. B 84 205446Google Scholar
[21] Debart A, Paterson A J, Bao J, Bruce P G 2008 Angew. Chem. Int. Ed. Engl. 47 4521Google Scholar
[22] Yu Y, Zhang B, He Y B, Huang Z D, Oh S W, Kim J K 2013 J. Mater. Chem. A 1 1163Google Scholar
[23] Debart A, Bao J, Armstrong G, Bruce P G 2007 J. Power Sources 174 1177Google Scholar
[24] Black R, Lee J H, Adams B, Mims C A, Nazar L F 2013 Angew. Chem. Int. Ed. Engl. 52 392Google Scholar
[25] Cui Y, Wen Z, Liu Y 2011 Energy Environ. Sci. 4 4727Google Scholar
[26] Zhu J, Ren X, Liu J, Zhang W, Wen Z 2015 Acs Catalysis 5 73Google Scholar
[27] Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Jung S K, Kim T, Kim Y H, Lepro X, Ovalle Robles R, Baughman R H, Kang K 2013 Energy Environ. Sci. 6 3570Google Scholar
[28] Lu Y C, Xu Z, Gasteiger H A, Chen S, Hamad Schifferli K, Shao Horn Y 2010 J. Am. Chem. Soc. 132 12170Google Scholar
[29] Li F J, Tang D M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H S 2013 Nano Lett. 13 4702Google Scholar
[30] Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J 2013 ACS Nano 7 3532Google Scholar
[31] Cai F, Lei X L 2023 Appl. Surf. Sci. 609 155331Google Scholar
[32] Cai F, Lei X L, Ke Q, Ouyang C Y 2023 J. Phys. Chem. C 127 14232Google Scholar
[33] Sun B, Huang X D, Chen S Q, Munroe P, Wang G X 2014 Nano Lett. 14 3145Google Scholar
[34] Yoo E, Zhou H S 2011 ACS Nano 5 3020Google Scholar
[35] Zhang Y, Ge J, Wang L, Wang D, Ding F, Tao X, Chen W 2013 Sci. Rep. 3 2771Google Scholar
[36] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英 2019 68 128801Google Scholar
Hou B P, Gan Z L, Lei X L, Zhong S Y, Xu B, Ouyang C Y 2019 Acta Phys. Sin. 68 128801Google Scholar
[37] Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Lee C S 2012 ACS Nano 6 1970Google Scholar
[38] Wang H, Zhou Y, Wu D, Liao L, Zhao S L, Peng H L, Liu Z F 2013 Small 9 1316Google Scholar
[39] Ren X D, Zhu J Z, Du F, Liu J J, Zhang W Q 2014 J. Phys. Chem. C 118 22412Google Scholar
[40] Ren X D, Wang B Z, Zhu J Z, Liu J J, Zhang W Q, Wen Z Y 2015 Phys. Chem. Chem. Phys. 17 14605Google Scholar
[41] Hou B P, Lei X L, Zhong S Y, Sun B Z, Ouyang C Y 2020 Phys. Chem. Chem. Phys. 22 14216Google Scholar
[42] Salehi M, Shariatinia Z, Sadeghi A 2019 J. Electroanal. Chem. 832 165Google Scholar
[43] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[44] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[45] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[46] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[47] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar
[48] Topsakal M, Ciraci S 2012 Phys. Rev. B 86 205402Google Scholar
Catalog
Metrics
- Abstract views: 1795
- PDF Downloads: 60
- Cited By: 0