Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of NaCu5S3 composite NixFe-LDH structure on hydrolysis oxygen evolution performance

Bai Cheng Wu Yong Xin Yu-Ci Mou Jun-Feng Jiang Jun-Ying Ding Ding Xia Lei Yu Peng

Citation:

Effect of NaCu5S3 composite NixFe-LDH structure on hydrolysis oxygen evolution performance

Bai Cheng, Wu Yong, Xin Yu-Ci, Mou Jun-Feng, Jiang Jun-Ying, Ding Ding, Xia Lei, Yu Peng
PDF
HTML
Get Citation
  • The oxygen evolution reaction (OER) plays a critical role in energy storage and conversion devices such as zinc-air batteries, fuel cells, and electrolysis water. However, the OER process involves a four-electron transfer, leading to slow reaction kinetics. Therefore, it is necessary to explore an efficient, inexpensive, and durable electrocatalysts to accelerate the OER process. Noble metal oxides are considered the most advanced OER electrocatalysts, but their high price and scarcity limit their commercial applications. Thus, researchers have started exploring other low-cost materials as alternatives. Nanocomposite materials have emerged as a promising alternative to expensive and scarce noble metal oxide electrocatalysts for OER. Therefore, this work synthesizes novel nanocomposite materials, NaCu5S3@NixFe-LDH (x = 1, 2, 3, 4) nanosheet array via hydrothermal and water bath methods. The structure and morphology of each product are characterized, indicating a tightly integrated interface between NaCu5S3 and Ni2Fe-LDH, which facilitates rapid charge transfer and enhancement of electron regulation at the interface. This changes the local structure characteristics and promotes the OER catalytic performance. Electrochemical characterization results show that in a 1.0 M KOH electrolyte, the overpotential of NaCu5S3@Ni2Fe-LDH for OER at a current density of 20 mA/cm2 is only 227 mV, significantly lower than that of the original NaCu5S3 (271 mV) and Ni2Fe-LDH (275 mV), with stability duration reaching 72 h. Electrochemical results also reveal that with the increase of overpotential, NaCu5S3@Ni2Fe-LDH shows a significant oxidation peak between 1.35–1.45 (V vs. RHE), which leads to the activation of Ni2+ to Ni3+ high oxidation state. The high oxidation state of Ni will promote the OER. The NaCu5S3@Ni2Fe-LDH composite electrocatalyst exhibits lower charge transfer resistance, higher double layer capacitance value (10.0 mF/cm2), and electrochemical active surface area (250 cm2), which are also beneficial to promoting OER. This study highlights the potential of nanocomposite materials as cost-effective alternatives to noble metal oxide electrocatalysts for OER. The NaCu5S3@Ni2Fe-LDH composite electrocatalyst exhibits excellent OER performance with a low overpotential, high stability, and favorable electrochemical properties. This research provides a valuable insight into the design and development of efficient and sustainable electrocatalysts for energy conversion and storage applications.
      Corresponding author: Wu Yong, wy_yp@shu.edu.cn ; Yu Peng, pengyu@cqnu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 52071043) and the Key Science and Technology Research Program Project of the Chongqing Education Commission of China (Grant No. KJZD-K201900501).
    [1]

    Zhang Z H, Wang C L, Ma X L, Liu F, Xiao H, Zhang J, Lin Z, Hao Z P 2021 Small 17 2103785Google Scholar

    [2]

    Zhao X H, Pattengale B, Fan D H, Zou Z H, Zhao Y Q, Du J, Huang J E, Xu C L 2018 ACS Energy Lett. 3 2520Google Scholar

    [3]

    Zhao X, Zheng X R, Lu Q, Li Y, Xiao F P, Tang B, Wang S X, Yu D Y W, Rogach A L 2023 EcoMat. 5 e12293Google Scholar

    [4]

    Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z C 2020 J. Chem. Soc. Rev. 49 2196Google Scholar

    [5]

    Gao J J, Xu C Q, Hung S F, Liu W, Cai W Z, Zeng Z P, Jia C M, Chen H M, Xiao H, Li J, Huang Y Q, Liu B 2019 J. Am. Chem. Soc. 141 3014Google Scholar

    [6]

    孙涛, 袁健美 2023 72 028901Google Scholar

    Sun T, Yuan J M 2023 Acta Phys. Sin. 72 028901Google Scholar

    [7]

    汤衍浩 2023 72 027802Google Scholar

    Tang Y H 2023 Acta Phys. Sin. 72 027802Google Scholar

    [8]

    She Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F 2017 Science 355 4998Google Scholar

    [9]

    Guo Y N, Park T, Yi J W, Henzie J, Kim J, Wang Z L, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y 2019 Adv. Mater. 31 1807134Google Scholar

    [10]

    Chia X, Eng A Y S, Ambrosi A, Tan S M, Pumera M 2015 Chem. Rev. 115 11941Google Scholar

    [11]

    Zheng Y, Jiao Y, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52Google Scholar

    [12]

    李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友 2023 72 029501Google Scholar

    Li Y P, Tang X Z, Chen X N, Gao C Y, Chen Y N, Fan C J, Lü J Y 2023 Acta Phys. Sin. 72 029501Google Scholar

    [13]

    Deng S J, Shen Y B, Xie D, Lu Y F, Yu X L, Yang L, Wang X L, Xia X H, Tu J P 2019 J. Energy Chem. 39 61Google Scholar

    [14]

    Liu G M, Schulmeyer T, Brötz J, Klein A, Jaegermann W 2003 Thin Solid Films 431 477Google Scholar

    [15]

    邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森 2023 72 027501Google Scholar

    Deng C H, Yu Z H, Wang Y T, Kong S, Zhou C, Yang S 2023 Acta Phys. Sin. 72 027501Google Scholar

    [16]

    Zhao J, Zhang J J, Li Z Y, Bu X H 2020 Small 16 2003916Google Scholar

    [17]

    Lü L, Yang Z X, Chen K, Wang C D, Xiong Y J 2019 Adv. Energy Mater. 9 1803358Google Scholar

    [18]

    Huang Z N, Liao X P, Zhang W B, Hu J L, Gao Q S 2022 ACS Catal. 12 13951Google Scholar

    [19]

    Lin X J, Cao S F, Chen H Y, Chen X D, Wang Z J, Zhou S N, Xu H, Liu S Y, Wei S X, Lu X Q 2022 Chem. Engine. J. 433 133524Google Scholar

    [20]

    Song S Z, Mu L H, Jiang Y, Sun J, Zhang Y, Shi G S, Sun H N 2022 ACS Appl. Mater. Inter. 14 47560Google Scholar

    [21]

    Li D, Qin Y Y, Liu J, Zhao H Y, Sun Z J, Chen G B, Wu D Y, Su Y Q, Ding S J, Xiao C H V 2022 Adv. Funct. Mater. 32 2107056Google Scholar

    [22]

    Lv L, He X B, Wang J S, Ruan Y J, Yang S X, Yuan H, Zhang T R 2021 Appl. Catal. B 298 120531Google Scholar

    [23]

    Gu Z X, Yang N, Han P, Kuang M, Mei B B, Jiang Z, Zhong J, Li L, Zheng G F 2019 Small Methods 3 1800449Google Scholar

    [24]

    Du C F, Dinh K N, Liang Q H, Zheng Y, Luo Y B, Zhang J L, Yan Q Y 2018 Adv. Energy Mater. 8 1801127Google Scholar

    [25]

    Dinh K N, Sun Y X, Pei Z X, Yuan Z W, Suwardi A, Huang Q W, Liao X Z, Wang Z G, Chen Y, Yan Q Y 2020 Small 16 1905885Google Scholar

    [26]

    Liu M J, Min K A, Han B C, Lee L Y S 2021 Adv. Energy Mater. 11 2101281Google Scholar

    [27]

    Li A, Zhang Z, Feng J, Lü F, Li Y, Wang R, Lu M, Gupta R B, Xi P, Zhang S 2018 J. Am. Chem. Soc. 140 17624Google Scholar

    [28]

    Xie Q X, Ren D, Bai L C, Ge R L, Zhou W H, Bai L, Xie W, Wang J H, Grätzel M, Luo J S 2023 Chin. J. Catalysis 44 127Google Scholar

    [29]

    Li S, Chen B B, Wang Y, Ye M Y, Aken P A V, Cheng C, Thomas A 2021 Nat. Mater. 20 1240Google Scholar

    [30]

    Wan K, Luo J S, Zhou C, Zhang T, Arbiol J, Lu X H, Mao B W, Zhang X, Fransaer J 2019 Adv. Funct. Mater. 29 1900315Google Scholar

    [31]

    Bai Y K, Wu Y, Zhou X C, Ye Y F, Nie K Q, Wang J, Xie M, Zhang Z X, Liu Z J, Cheng T, Gao C B 2022 Nat. Commun. 13 6094Google Scholar

    [32]

    Zhu J L, Qian J M, Peng X B, Xia B R, Gao D Q 2023 Nano-Micro Lett. 15 30Google Scholar

    [33]

    Chakraborty B, Kalra S, Beltrán-Suito R, Das C, Hellmann T, Menezes W P, Driess M 2020 Chem. Asian J. 15 852Google Scholar

    [34]

    Liang H J, Shuang W, Zhang Y T, Chao S J, Han H J, Wang X B, Zhang H, Yang L 2018 Chem. Electro. Chem. 5 494Google Scholar

    [35]

    Li Y M, Zhang X Y, Zhuo S Y, Liu S L, Han A X, Li L G, Tian Y 2021 Appl. Surf. Sci. 555 149441Google Scholar

    [36]

    He L B, Zhou D, Lin Y, Ge R X, Hou X D, Sun X P, Zheng C B 2018 ACS Catal. 8 3859Google Scholar

    [37]

    Chinnadurai D, Rajendiran R, Kandasamy P 2022 J. Colloid Inter. Sci. 606 101Google Scholar

    [38]

    Tan L, Yu J T, Wang C, Wang H F, Liu X, Gao H T, Xin L T, Liu D Z, Hou W G, Zhan T R 2022 Adv. Funct. Mater. 32 2200951

    [39]

    Sun S, Zhou X, Cong B, Hong W, Chen G 2020 ACS Catal. 10 9086Google Scholar

    [40]

    Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Liu S H, Zhuang X D, Feng X L 2016 Angew. Chem. Int. Ed. 55 6702Google Scholar

    [41]

    Zhao Z L, Wu H X, He H L, Xu X L, Jin Y D 2014 Adv. Funct. Mater. 24 4698Google Scholar

    [42]

    Li Y, Chen G, Zhu Y, Hu Z, Chan T, She S, Dai J, Zhou W, Shao Z 2021 Adv. Funct. Mater. 31 2103569Google Scholar

  • 图 1  NaCu5S3, NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH和NaCu5S3@Ni4Fe-LDH 的XRD衍射谱图

    Figure 1.  XRD patterns of the NaCu5S3, NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH and NaCu5S3@Ni4Fe-LDH.

    图 2  (a)—(e) NaCu5S3, NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH和NaCu5S3@Ni4Fe-LDH的SEM图像; (f)—(i) NaCu5S3和NaCu5S3@Ni2Fe-LDH的TEM和HRTEM图像; (j), (k) NaCu5S3和NaCu5S3@Ni2Fe-LDH的EDS能谱图

    Figure 2.  (a)–(e) SEM image of the NaCu5S3, NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH and NaCu5S3@Ni4Fe-LDH; (f)–(i) TEM and HRTEM images of the NaCu5S3 and NaCu5S3@Ni2Fe-LDH; (j), (k) EDS images for the NaCu5S3 and NaCu5S3@Ni2Fe-LDH.

    图 3  (a)—(c) NaCu5S3和NaCu5S3@Ni2Fe-LDH Na 1s, Cu 2p和S 2p XPS能谱; (d), (e) NaCu5S3@Ni2Fe-LDH Ni 2p和Fe 2p XPS能谱; (f) NaCu5S3和NaCu5S3@Ni2Fe-LDH XPS能谱

    Figure 3.  (a)–(c) Na 1s, Cu 2p and S 2p XPS spectra of NaCu5S3 and NaCu5S3@Ni2Fe-LDH; (d), (e) Ni 2p and Fe 2p XPS spectra of the NaCu5S3@Ni2Fe-LDH; (f) XPS spectra of NaCu5S3 and NaCu5S3@Ni2Fe-LDH.

    图 4  NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH, NaCu5S3@Ni4Fe-LDH, NaCu5S3和Ni2Fe-LDH (a) LSV极化曲线; (b) Tafel斜率; (c) EIS; (d) Cdl; (e) ECSA; (f) NaCu5S3@Ni2Fe-LDH CP曲线

    Figure 4.  NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH, NaCu5S3@Ni4Fe-LDH, NaCu5S3 and Ni2Fe-LDH: (a) LSV polarization curves; (b) Tafel slope; (c) EIS; (d) Cdl; (e) ECSA; (f) CP curve of NaCu5S3@Ni2Fe-LDH.

    图 5  (a)—(c) NaCu5S3 OER前后的Na 1s, Cu 2p和S 2p XPS能谱; (d)—(h) NaCu5S3@Ni2Fe-LDH OER前后的Na 1s, Cu 2p, S 2p, Ni 2p和Fe 2p XPS能谱

    Figure 5.  (a)–(c) Na 1s, Cu 2p and S 2p XPS spectra of the NaCu5S3 before and after OER; (d)–(h) Na 1s, Cu 2p, S 2p, Ni 2p and Fe 2p XPS spectra of the NaCu5S3@Ni2Fe-LDH before and after OER.

    表 1  1 M KOH电解液中催化剂的OER活性比较

    Table 1.  Comparison of OER activity of catalysts in 1 M KOH electrolytes.

    CatalystElectrolyteOverpotential/mVCurrent density
    /(mA·cm–2)
    Ref.
    NaCu5S3@NiFe-LDH1 M KOH25420This work
    NaCu5S3@Ni2Fe-LDH1 M KOH22720This work
    NaCu5S3@Ni3Fe-LDH1 M KOH24820This work
    NaCu5S3@Ni4Fe-LDH1 M KOH25920This work
    NaCu5S31 M KOH27120This work
    Cu9S5/NF1 M KOH29810[33]
    CuS-FSM1 M KOH40810[34]
    CoO@Cu2S1 M KOH27710[35]
    Cu2S/CF1 M KOH33620[36]
    CuNiS1 M KOH33710[37]
    Cu-NiS21 M KOH23210[25]
    Cu2S/TiO2/Cu2S1 M KOH28410[13]
    DownLoad: CSV
    Baidu
  • [1]

    Zhang Z H, Wang C L, Ma X L, Liu F, Xiao H, Zhang J, Lin Z, Hao Z P 2021 Small 17 2103785Google Scholar

    [2]

    Zhao X H, Pattengale B, Fan D H, Zou Z H, Zhao Y Q, Du J, Huang J E, Xu C L 2018 ACS Energy Lett. 3 2520Google Scholar

    [3]

    Zhao X, Zheng X R, Lu Q, Li Y, Xiao F P, Tang B, Wang S X, Yu D Y W, Rogach A L 2023 EcoMat. 5 e12293Google Scholar

    [4]

    Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z C 2020 J. Chem. Soc. Rev. 49 2196Google Scholar

    [5]

    Gao J J, Xu C Q, Hung S F, Liu W, Cai W Z, Zeng Z P, Jia C M, Chen H M, Xiao H, Li J, Huang Y Q, Liu B 2019 J. Am. Chem. Soc. 141 3014Google Scholar

    [6]

    孙涛, 袁健美 2023 72 028901Google Scholar

    Sun T, Yuan J M 2023 Acta Phys. Sin. 72 028901Google Scholar

    [7]

    汤衍浩 2023 72 027802Google Scholar

    Tang Y H 2023 Acta Phys. Sin. 72 027802Google Scholar

    [8]

    She Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F 2017 Science 355 4998Google Scholar

    [9]

    Guo Y N, Park T, Yi J W, Henzie J, Kim J, Wang Z L, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y 2019 Adv. Mater. 31 1807134Google Scholar

    [10]

    Chia X, Eng A Y S, Ambrosi A, Tan S M, Pumera M 2015 Chem. Rev. 115 11941Google Scholar

    [11]

    Zheng Y, Jiao Y, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52Google Scholar

    [12]

    李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友 2023 72 029501Google Scholar

    Li Y P, Tang X Z, Chen X N, Gao C Y, Chen Y N, Fan C J, Lü J Y 2023 Acta Phys. Sin. 72 029501Google Scholar

    [13]

    Deng S J, Shen Y B, Xie D, Lu Y F, Yu X L, Yang L, Wang X L, Xia X H, Tu J P 2019 J. Energy Chem. 39 61Google Scholar

    [14]

    Liu G M, Schulmeyer T, Brötz J, Klein A, Jaegermann W 2003 Thin Solid Films 431 477Google Scholar

    [15]

    邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森 2023 72 027501Google Scholar

    Deng C H, Yu Z H, Wang Y T, Kong S, Zhou C, Yang S 2023 Acta Phys. Sin. 72 027501Google Scholar

    [16]

    Zhao J, Zhang J J, Li Z Y, Bu X H 2020 Small 16 2003916Google Scholar

    [17]

    Lü L, Yang Z X, Chen K, Wang C D, Xiong Y J 2019 Adv. Energy Mater. 9 1803358Google Scholar

    [18]

    Huang Z N, Liao X P, Zhang W B, Hu J L, Gao Q S 2022 ACS Catal. 12 13951Google Scholar

    [19]

    Lin X J, Cao S F, Chen H Y, Chen X D, Wang Z J, Zhou S N, Xu H, Liu S Y, Wei S X, Lu X Q 2022 Chem. Engine. J. 433 133524Google Scholar

    [20]

    Song S Z, Mu L H, Jiang Y, Sun J, Zhang Y, Shi G S, Sun H N 2022 ACS Appl. Mater. Inter. 14 47560Google Scholar

    [21]

    Li D, Qin Y Y, Liu J, Zhao H Y, Sun Z J, Chen G B, Wu D Y, Su Y Q, Ding S J, Xiao C H V 2022 Adv. Funct. Mater. 32 2107056Google Scholar

    [22]

    Lv L, He X B, Wang J S, Ruan Y J, Yang S X, Yuan H, Zhang T R 2021 Appl. Catal. B 298 120531Google Scholar

    [23]

    Gu Z X, Yang N, Han P, Kuang M, Mei B B, Jiang Z, Zhong J, Li L, Zheng G F 2019 Small Methods 3 1800449Google Scholar

    [24]

    Du C F, Dinh K N, Liang Q H, Zheng Y, Luo Y B, Zhang J L, Yan Q Y 2018 Adv. Energy Mater. 8 1801127Google Scholar

    [25]

    Dinh K N, Sun Y X, Pei Z X, Yuan Z W, Suwardi A, Huang Q W, Liao X Z, Wang Z G, Chen Y, Yan Q Y 2020 Small 16 1905885Google Scholar

    [26]

    Liu M J, Min K A, Han B C, Lee L Y S 2021 Adv. Energy Mater. 11 2101281Google Scholar

    [27]

    Li A, Zhang Z, Feng J, Lü F, Li Y, Wang R, Lu M, Gupta R B, Xi P, Zhang S 2018 J. Am. Chem. Soc. 140 17624Google Scholar

    [28]

    Xie Q X, Ren D, Bai L C, Ge R L, Zhou W H, Bai L, Xie W, Wang J H, Grätzel M, Luo J S 2023 Chin. J. Catalysis 44 127Google Scholar

    [29]

    Li S, Chen B B, Wang Y, Ye M Y, Aken P A V, Cheng C, Thomas A 2021 Nat. Mater. 20 1240Google Scholar

    [30]

    Wan K, Luo J S, Zhou C, Zhang T, Arbiol J, Lu X H, Mao B W, Zhang X, Fransaer J 2019 Adv. Funct. Mater. 29 1900315Google Scholar

    [31]

    Bai Y K, Wu Y, Zhou X C, Ye Y F, Nie K Q, Wang J, Xie M, Zhang Z X, Liu Z J, Cheng T, Gao C B 2022 Nat. Commun. 13 6094Google Scholar

    [32]

    Zhu J L, Qian J M, Peng X B, Xia B R, Gao D Q 2023 Nano-Micro Lett. 15 30Google Scholar

    [33]

    Chakraborty B, Kalra S, Beltrán-Suito R, Das C, Hellmann T, Menezes W P, Driess M 2020 Chem. Asian J. 15 852Google Scholar

    [34]

    Liang H J, Shuang W, Zhang Y T, Chao S J, Han H J, Wang X B, Zhang H, Yang L 2018 Chem. Electro. Chem. 5 494Google Scholar

    [35]

    Li Y M, Zhang X Y, Zhuo S Y, Liu S L, Han A X, Li L G, Tian Y 2021 Appl. Surf. Sci. 555 149441Google Scholar

    [36]

    He L B, Zhou D, Lin Y, Ge R X, Hou X D, Sun X P, Zheng C B 2018 ACS Catal. 8 3859Google Scholar

    [37]

    Chinnadurai D, Rajendiran R, Kandasamy P 2022 J. Colloid Inter. Sci. 606 101Google Scholar

    [38]

    Tan L, Yu J T, Wang C, Wang H F, Liu X, Gao H T, Xin L T, Liu D Z, Hou W G, Zhan T R 2022 Adv. Funct. Mater. 32 2200951

    [39]

    Sun S, Zhou X, Cong B, Hong W, Chen G 2020 ACS Catal. 10 9086Google Scholar

    [40]

    Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Liu S H, Zhuang X D, Feng X L 2016 Angew. Chem. Int. Ed. 55 6702Google Scholar

    [41]

    Zhao Z L, Wu H X, He H L, Xu X L, Jin Y D 2014 Adv. Funct. Mater. 24 4698Google Scholar

    [42]

    Li Y, Chen G, Zhu Y, Hu Z, Chan T, She S, Dai J, Zhou W, Shao Z 2021 Adv. Funct. Mater. 31 2103569Google Scholar

  • [1] Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying. First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide. Acta Physica Sinica, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [2] Li Qiu-Hong, Ma Xiao-Xue, Pan Jing. Effect of substitution doping and surface adsorption of Al atoms on photocatalytic decomposition of water and oxygen from BiVO4 (010) crystal surface. Acta Physica Sinica, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [3] Wan Xin-Yang, Zhang Ye-Hui, Lu Shuai-Hua, Wu Yi-Lei, Zhou Qiong-Hua, Wang Jin-Lan. Machine learning accelerated search for new double perovskite oxide photocatalysis. Acta Physica Sinica, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [4] Zhang Feng, Lian Sen, Wang Ming-Yue, Chen Xue, Yin Ji-Kang, He Lei, Pan Hua-Qing, Ren Jun-Feng, Chen Mei-Na. Doping and strain effect on hydrogen evolution reaction catalysts of NiP2. Acta Physica Sinica, 2021, 70(14): 148802. doi: 10.7498/aps.70.20210298
    [5] Qi Qi, Chen Hai-Feng, Hong Zi-fan, Liu Ying-Ying, Guo Li-Xin, Li Li-Jun, Lu Qin, Jia Yi-Fan. Preparation and characteristics of ultra-wide Ga2O3 nanoribbons up to millimeter-long level without catalyst. Acta Physica Sinica, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [6] Liang Qi, Wang Ru-Zhi, Yang Meng-Qi, Wang Chang-Hao, Liu Jin-Wei. Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property. Acta Physica Sinica, 2020, 69(8): 087801. doi: 10.7498/aps.69.20191923
    [7] Xu Ke-Xin, Xia Tian-Yu, Zhou Liang, Li Shun-Fang, Cai Bin, Wang Rong-Ming, Guo Hai-Zhong. Synthesization, characterization, and highly efficient electrocatalysis of chain-like Pt-Ni nanoparticles. Acta Physica Sinica, 2020, 69(7): 076101. doi: 10.7498/aps.69.20200343
    [8] Li Zhuang, Di Lan-Bo, Yu Feng, Zhang Xiu-Ling. Research progress of metal catalysts enhanced synthesized by cold plasma. Acta Physica Sinica, 2018, 67(21): 215202. doi: 10.7498/aps.67.20181451
    [9] Jin Zhong-Hua, Liu Bo-Fei, Liang Jun-Hui, Wang Ning, Zhang Qi-Xing, Liu Cai-Chi, Zhao Ying, Zhang Xiao-Dan. Modulating catalytic capacities of room-temperature synthetized amorphous molybdenum trisulfide hydrogen evolving catalysts and their applications to in series solar water splitting devices in series. Acta Physica Sinica, 2016, 65(11): 118801. doi: 10.7498/aps.65.118801
    [10] Li Zong-Bao, Wang Xia, Fan Shuai-Wei. Research of the synergistic effects in Cu/N co-doped TiO2 surface:A DFT calculation. Acta Physica Sinica, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [11] Yang Xiu-Qing, Hu Yi, Zhang Jing-Lu, Wang Yan-Qiu, Pei Chun-Mei, Liu Fei. Preparation of boron nanowires using AuPd nanoparticles as catalyst and their field emission behavios. Acta Physica Sinica, 2014, 63(4): 048102. doi: 10.7498/aps.63.048102
    [12] Chen Zhao, Ding Hong-Rui, Chen Wei-Hua, Li Yan, Zhang Guo-Yi, Lu An-Huai, Hu Xiao-Dong. Photoelectric catalytic properties of silicon solar cell used in microbial fuel cell system. Acta Physica Sinica, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [13] Ye Jia-Yu, Liu Ya-Li, Wang Jing-Lin, He Yao. Influence of Zr catalyst on reversible hydrogen storage characteristics of NaAlH4 and Na3AlH6. Acta Physica Sinica, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [14] Zhang Guo-Ying, Yang Li-Na, Zhang Hui, Wu Jian-Jun. The study of the influence mechanism of platinum group and transition metals on the passivation of Ti alloys. Acta Physica Sinica, 2010, 59(3): 2022-2026. doi: 10.7498/aps.59.2022
    [15] Zhang Hong-Jun, Wang Dong, Chen Zhi-Quan, Wang Shao-Jie, Xu You-Ming, Luo Xi-Hui. Positron annihilation study of Mo dispersion in MoO3/Al2O3 catalysts. Acta Physica Sinica, 2008, 57(11): 7333-7337. doi: 10.7498/aps.57.7333
    [16] Ding Cai-Rong, Wang Bing, Yang Guo-Wei, Wang He-Zhou. High quality SnO2 crystals grown with catalyst-assistance and study on their photoluminescent spectroscopy. Acta Physica Sinica, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [17] Niu Zhi-Qiang, Fang Yan. The effect of composition of the catalysts on the preparation of single-walled carbon nanotubes. Acta Physica Sinica, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [18] Li Zhen-Hua, Wang Qin-Mei, Wang Miao. Influence of cerium metal as catalyst on the growth and structure of single-walled carbon nanotubes. Acta Physica Sinica, 2005, 54(5): 2158-2161. doi: 10.7498/aps.54.2158
    [19] Zhang Hong-Rui, Guo Xin-Yong, Ding Pei, Du Zu-Liang, Lia ng Er-Jun. The effect of different catalysts on the growth of boron carbonitride nanotubes by thermal decomposition. Acta Physica Sinica, 2003, 52(7): 1808-1811. doi: 10.7498/aps.52.1808
    [20] ZHANG TAO, KANG MIN-CHENG, LU WEN-CHANG. IMPURITY EFFECTS ON CHEMISORPTION OF COMPOSITE CATALYSTS. Acta Physica Sinica, 1990, 39(12): 2025-2028. doi: 10.7498/aps.39.2025
  • supplement 10-20230146(补充材料).pdf supplement
Metrics
  • Abstract views:  3794
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2023
  • Accepted Date:  12 March 2023
  • Available Online:  24 March 2023
  • Published Online:  20 May 2023

/

返回文章
返回
Baidu
map