-
Λ-enhanced gray molasses cooling (Λ-GMC) technique has been widely used in experiments to prepare cold atomic samples below the sub-Doppler temperature limit. To meet the experimental requirements of cavity quantum electrodynamics systems, we design and construct a wide-range, fast-tuning laser system by integrating tapered amplifiers, fiber phase modulators, etalon, injection locking amplification techniques etc. This laser system achieves a maximum tuning range of 600 MHz and a frequency tuning speed of 5 ns. Based on this laser system, loading atom in a crossed dipole trap assisted by cesium D2 line Λ-GMC cooling in the center of the optical microcavity is studied, and various factors affecting the atom loading are mainly as follows: laser duration
$\tau $ , three-dimensional magnetic field$ \left( {{B_x}, {B_y}, {B_z}} \right) $ , single-photon detuning$\varDelta $ , two-photon detuning$\delta $ , ratio of cooling beam power to repumping beam power${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$ , and cooling beam power${I_{{\text{cooling}}}}$ . The optimal parameters in this system are follows:$ \tau = 7{\text{ ms}},\; \delta = 0.2{\text{ MHz}},\; \varDelta = 5\varGamma, \;{I_{{\text{cool}}}}/{I_{{\text{rep}}}} = 3, {\text{ and }} {I_{{\text{cool}}}} = 1.2{I_{{\text{sat}}}}. $ Comparing with traditional PGC-assisted loading, the number of atoms is increased about 4 times, and the atomic temperature decreases from$ 25{\text{ μK}} $ to$ 8{\text{ μK}} $ . This experiment provides important insights for preparing ultracold atomic samples and capturing single atom arrays.-
Keywords:
- Λ-enhanced gray molasses cooling /
- Doppler temperature limit /
- wide-range frequency tuning /
- cold atom
[1] Dalibard J, Cohen-Tannoudji C 1989 J. Opt. Soc. Am. 6 2023Google Scholar
[2] Ungar P J, Weiss D S, Riis E, Chu S 1989 J. Opt. Soc. Am. 6 2058Google Scholar
[3] Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I 1989 J. Opt. Soc. Am. 6 2084Google Scholar
[4] Grynberg G, Courtois J Y 1994 EPL 27 41Google Scholar
[5] Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L, Clairon A 1996 Phys. Rev. A 53 R3734Google Scholar
[6] Esslinger T, Sander F, Hemmerich A, Hänsch T W, Ritsch H, Weidemüller M 1996 Opt. Lett. 21 991Google Scholar
[7] Triché C, Verkerk P, Grynberg G 1999 Eur. Phys. J. D 5 225Google Scholar
[8] Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411Google Scholar
[9] Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408Google Scholar
[10] Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C, Chevy F 2015 Phys. Rev. A 91 023426Google Scholar
[11] Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G, Ferrari G 2016 Phy. Rev. A 93 023421Google Scholar
[12] Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H, Zhang J 2018 Chin. Phys. Lett. 35 123701Google Scholar
[13] Nath D, Easwaran R K, Rajalakshmi G, Unnikrishnan C S 2013 Phys. Rev. A 88 053407Google Scholar
[14] Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W, Kuhr S 2017 J. Phys. B: At. Mol. Opt. Phys. 50 095002Google Scholar
[15] Chen H Z, Yao, X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Pan J W 2016 Phys. Rev. A 94 033408Google Scholar
[16] Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C, Minardi F 2018 Sci. Rep. 8 1301Google Scholar
[17] Hsiao Y F, Lin Y J, Chen Y C 2018 Phys. Rev. A 98 033419Google Scholar
[18] Naik D S, Eneriz-Imaz H, Carey M, Freegarde T, Minardi F, Battelier B, Bouyer P, Bertoldi A 2020 Phys. Rev. Res. 2 013212Google Scholar
[19] Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T 2023 Phys. Rev. Lett. 130 173601Google Scholar
[20] Reiserer A, Nölleke C, Ritter S, Rempe G 2013 Phys. Rev. Lett. 110 223003Google Scholar
[21] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y, Chen Y, Yu I, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar
[22] Lounis B, Cohen-Tannoudji C 1992 J. Phys. II France 2 579Google Scholar
[23] Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2008 Phys. Rev. A 78 033425Google Scholar
[24] Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057Google Scholar
[25] Huang C, Covey J P, Gadway B 2022 Phys. Rev. Res. 4 013240Google Scholar
[26] Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P, Rauschenbeutel A 2016 Phys. Rev. A 94 061401Google Scholar
[27] Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar
[28] Grünzweig T, Hilliard A, McGovern M, Andersen M F 2010 Nat. Phys. 6 951Google Scholar
-
图 1 (a)铯原子 D2 线能级图; (b)快速、宽范围调谐激光系统产生过程, TA为锥型放大器, Laser为激光器, FPM为光纤位相调制器, Etalon为标准具, ILM为注入锁定放大, D-AOM为双通声光调制器; (c)时序图
Figure 1. (a) Cesium atom D2 line energy level diagram; (b) process of generating a fast and wide-range tunable laser system, TA reprsents tapered amplifier, Laser reprsents laser source; FPM reprsents fiber phase modulator, Etalon reprsents reference cavity, ILM reprsents injection-locked amplifier, D-AOM reprsents double-acousto-optic modulators; (c) time sequence for the experiment.
图 3 单光子失谐$ \varDelta $和双光子失谐$ \delta $实验优化 (a)原子数随$ \varDelta $的变化关系; (b)原子数随$ \delta $的变化关系
Figure 3. Experimental optimization of single-photon detuning and two-photon detuning: (a) The relationship between the atom number and $ \varDelta $; (b) the relationship between the atom number and $ \delta $.
图 4 激光强度优化 (a)原子数随${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$的变化关系; (b)原子数随${I_{{\text{cool}}}}$的变化关系
Figure 4. Experimental optimization of the laser intensity: (a) The relationship between the atom number and ${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$; (b) the relationship between the atom number and ${I_{{\text{cool}}}}$.
-
[1] Dalibard J, Cohen-Tannoudji C 1989 J. Opt. Soc. Am. 6 2023Google Scholar
[2] Ungar P J, Weiss D S, Riis E, Chu S 1989 J. Opt. Soc. Am. 6 2058Google Scholar
[3] Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I 1989 J. Opt. Soc. Am. 6 2084Google Scholar
[4] Grynberg G, Courtois J Y 1994 EPL 27 41Google Scholar
[5] Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L, Clairon A 1996 Phys. Rev. A 53 R3734Google Scholar
[6] Esslinger T, Sander F, Hemmerich A, Hänsch T W, Ritsch H, Weidemüller M 1996 Opt. Lett. 21 991Google Scholar
[7] Triché C, Verkerk P, Grynberg G 1999 Eur. Phys. J. D 5 225Google Scholar
[8] Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411Google Scholar
[9] Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408Google Scholar
[10] Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C, Chevy F 2015 Phys. Rev. A 91 023426Google Scholar
[11] Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G, Ferrari G 2016 Phy. Rev. A 93 023421Google Scholar
[12] Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H, Zhang J 2018 Chin. Phys. Lett. 35 123701Google Scholar
[13] Nath D, Easwaran R K, Rajalakshmi G, Unnikrishnan C S 2013 Phys. Rev. A 88 053407Google Scholar
[14] Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W, Kuhr S 2017 J. Phys. B: At. Mol. Opt. Phys. 50 095002Google Scholar
[15] Chen H Z, Yao, X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Pan J W 2016 Phys. Rev. A 94 033408Google Scholar
[16] Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C, Minardi F 2018 Sci. Rep. 8 1301Google Scholar
[17] Hsiao Y F, Lin Y J, Chen Y C 2018 Phys. Rev. A 98 033419Google Scholar
[18] Naik D S, Eneriz-Imaz H, Carey M, Freegarde T, Minardi F, Battelier B, Bouyer P, Bertoldi A 2020 Phys. Rev. Res. 2 013212Google Scholar
[19] Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T 2023 Phys. Rev. Lett. 130 173601Google Scholar
[20] Reiserer A, Nölleke C, Ritter S, Rempe G 2013 Phys. Rev. Lett. 110 223003Google Scholar
[21] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y, Chen Y, Yu I, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar
[22] Lounis B, Cohen-Tannoudji C 1992 J. Phys. II France 2 579Google Scholar
[23] Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2008 Phys. Rev. A 78 033425Google Scholar
[24] Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057Google Scholar
[25] Huang C, Covey J P, Gadway B 2022 Phys. Rev. Res. 4 013240Google Scholar
[26] Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P, Rauschenbeutel A 2016 Phys. Rev. A 94 061401Google Scholar
[27] Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar
[28] Grünzweig T, Hilliard A, McGovern M, Andersen M F 2010 Nat. Phys. 6 951Google Scholar
Catalog
Metrics
- Abstract views: 1944
- PDF Downloads: 94
- Cited By: 0