-
The orientation of water molecules within nanochannels is pivotal in influencing water transport, particularly under the influence of electric fields. This study delves into the effects of electric field direction on water transport through disjoint nanochannels, a structure which is of emerging significance. Molecular dynamics simulations are conducted to study the properties of water in complete nanochannel and disjoint nanochannels with gap sizes of 0.2 nm and 0.4 nm, respectively, such as occupancy, transport, water bridge formation, and dipole orientation, by systematically varying the electric field direction from 0 to 180 degrees. The simulation results disclose that the electric field direction has little influence on water flow through complete nanochannels. However, as the size of the nanogap expands, the declining trend of water transfer rate through disjoint nanochannels becomes more distinctive when the electric field direction is shifted from 0 to 90 degrees under an electric field with a strength of 1 V/nm. Notably, results also reveal distinct behaviors at 90 degrees under an electric field with a strength of 1 V/nm, where the stable water chains, unstable water bridges, and no water bridges are observed in complete nanochannels, disjoint nanochannels with 0.2 nm gap, and 0.4 nm gap, respectively. Moreover, simulations indicate that increasing the electric field strength in a polarization direction perpendicular to the tube axis facilitates water bridge breakdown in disjoint nanochannels. This research sheds light on the intricate interplay between electric field direction and water transport dynamics in disjoint nanochannels, presenting valuable insights into various applications.
-
Keywords:
- electric field /
- disjoint nanochannels /
- direction
[1] Fajardo-Diaz J L, Morelos-Gomez A, Cruz-Silva R, Ishii K, Yasuike T, Kawakatsu T, Yamanaka A, Tejima S, Izu K, Saito S, Maeda J, Takeuchi K, Endo M 2022 Chem. Eng. J. 448 137359Google Scholar
[2] Kang X, Meng X W 2022 Chem. Phys. 559 111544Google Scholar
[3] Corry B 2008 J. Phys. Chem. B 112 1427Google Scholar
[4] Zhang R N, Liu Y N, He M R, Su Y L, Zhao X T, Elimelech M, Jiang Z Y 2016 Chem. Soc. Rev. 45 5888Google Scholar
[5] Werber J R, Osuji C O, Elimelech M 2016 Nat. Rev. Mater. 1 16018Google Scholar
[6] Abramyan A K, Bessonow N M, Mirantsev L V, Chevrychkina A A 2018 Eur. Phys. J. B 91 48Google Scholar
[7] Park H G, Jung Y 2014 Chem. Soc. Rev. 43 565Google Scholar
[8] 孙志伟, 何燕, 唐元政 2021 70 060201Google Scholar
Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201Google Scholar
[9] Qiu T, Meng X W, Huang J P 2015 J. Phys. Chem. B 119 1496Google Scholar
[10] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034Google Scholar
[11] Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar
[12] Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L 2016 Nature 537 210Google Scholar
[13] Farrokhbin M, Lohrasebi A 2023 Eur. Phys. J. E 46 93Google Scholar
[14] He Y C, Sun G, Koga K, Xu L M 2014 Sci. Rep. 4 6596Google Scholar
[15] Liu W C, Jing D W 2023 J. Phys. Chem. Lett. 14 5740Google Scholar
[16] Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275Google Scholar
[17] Zhang Q L, Yang R Y, Jiang W Z, Huang Z Q 2016 Nanoscale 8 1886Google Scholar
[18] Zhang Q L, Yang R Y 2016 Chem. Phys. Lett. 644 201Google Scholar
[19] Zhu J Z, Lan Y Q, Du H J, Zhang Y H, Su J G 2016 Phys. Chem. Chem. Phys. 18 17991Google Scholar
[20] Shafiei M, Von Domaros M, Bratko D, Luzar A 2019 J. Chem. Phys. 150 074505Google Scholar
[21] Vanzo D, Luzar A, Bratko D 2021 Phys. Chem. Chem. Phys. 23 27005Google Scholar
[22] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁 2018 67 056102Google Scholar
Zhang Z Q, Li C, Liu H L, Ge D H, Cheng G G, Ding J N 2018 Acta Phys. Sin. 67 056102Google Scholar
[23] 章其林, 王瑞丰, 周同, 王允杰, 刘琪 2023 72 084207Google Scholar
Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207Google Scholar
[24] de Freitas D N, Mendonca B H S, Kohler M H, Barbosa M C, Matos M J S, Batista R J C, de Oliveira A B 2020 Chem. Phys. 537 110849Google Scholar
[25] Sahimi M, Ebrahimi F 2019 Phys. Rev. Lett. 122 214506Google Scholar
[26] Meng X W, Shen L 2020 Chem. Phys. Lett. 739 137029Google Scholar
[27] Ebrahimi F, Maktabdaran G R, Sahimi M 2020 J. Phys. Chem. B 124 8340Google Scholar
[28] Meng X W, Li Y, Shen L, Yang X Q 2020 EPL 131 20003Google Scholar
[29] Meng X W, Li Y 2022 Physica E 135 114980Google Scholar
[30] Wang F, Zhang X K, Li S, Su J Y 2022 J. Mol. Liq. 362 119719Google Scholar
[31] Hess B, Kutzner C, Van De Spoel D, Lindahl E 2008 J. Chem. Theory. Comp. 4 435Google Scholar
[32] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar
[33] Nose S 1984 J. Chem. Phys. 81 511Google Scholar
[34] Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar
[35] Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166Google Scholar
[36] Li J Y, Gong X J, Lu H J, Li D, Fang H P 2007 P. Natl. Acad. Sci. USA 104 3687Google Scholar
[37] Darden T A, York D M, Pedersen L G 1993 J. Chem. Phys. 98 10089Google Scholar
[38] Zhao Y Z, Su J Y 2018 J. Phys. Chem. C 122 22178Google Scholar
[39] Fang C, Huang D C, Su J Y 2020 J. Phys. Chem. Lett. 11 940Google Scholar
[40] Xie Z, Li Z, Li J Y, Kou J L, Yao J, Fan J T 2021 J. Chem. Phys. 154 024705Google Scholar
[41] Xie Z, Hao S Q, Wang W Y, Kou J L, Fan J T 2022 J. Mol. Liq. 363 119852Google Scholar
-
图 1 模拟框架图, 包括2片石墨烯, 1个断裂纳米通道(断裂长度标记为L). 水分子用红白球表示, 石墨烯及断裂纳米通道用青色表示, 电场方向与+z方向的夹角定义为θ
Figure 1. Configuration of the simulation system. It contains two graphene sheets, a disjoint nanochannel with a nanogap (marked as L). Water molecules are shown in white and red. Carbon atoms are represented in cyan. The angle between the electric field direction and the +z is defined as θ
图 6 (a), (b) θ = 0°时, 完整纳米通道及断裂纳米通道内的水分子的结构图; (c), (d) θ = 90°时, 完整纳米通道及断裂纳米通道内的水分子的结构图
Figure 6. (a), (b) Structure of water molecules in complete nanochannels and disjoint nanochannels when θ = 0°, respectively; (c), (d) structure of water molecules in complete nanochannels and disjoint nanochannels when θ = 90°, respectively
-
[1] Fajardo-Diaz J L, Morelos-Gomez A, Cruz-Silva R, Ishii K, Yasuike T, Kawakatsu T, Yamanaka A, Tejima S, Izu K, Saito S, Maeda J, Takeuchi K, Endo M 2022 Chem. Eng. J. 448 137359Google Scholar
[2] Kang X, Meng X W 2022 Chem. Phys. 559 111544Google Scholar
[3] Corry B 2008 J. Phys. Chem. B 112 1427Google Scholar
[4] Zhang R N, Liu Y N, He M R, Su Y L, Zhao X T, Elimelech M, Jiang Z Y 2016 Chem. Soc. Rev. 45 5888Google Scholar
[5] Werber J R, Osuji C O, Elimelech M 2016 Nat. Rev. Mater. 1 16018Google Scholar
[6] Abramyan A K, Bessonow N M, Mirantsev L V, Chevrychkina A A 2018 Eur. Phys. J. B 91 48Google Scholar
[7] Park H G, Jung Y 2014 Chem. Soc. Rev. 43 565Google Scholar
[8] 孙志伟, 何燕, 唐元政 2021 70 060201Google Scholar
Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201Google Scholar
[9] Qiu T, Meng X W, Huang J P 2015 J. Phys. Chem. B 119 1496Google Scholar
[10] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034Google Scholar
[11] Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar
[12] Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L 2016 Nature 537 210Google Scholar
[13] Farrokhbin M, Lohrasebi A 2023 Eur. Phys. J. E 46 93Google Scholar
[14] He Y C, Sun G, Koga K, Xu L M 2014 Sci. Rep. 4 6596Google Scholar
[15] Liu W C, Jing D W 2023 J. Phys. Chem. Lett. 14 5740Google Scholar
[16] Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275Google Scholar
[17] Zhang Q L, Yang R Y, Jiang W Z, Huang Z Q 2016 Nanoscale 8 1886Google Scholar
[18] Zhang Q L, Yang R Y 2016 Chem. Phys. Lett. 644 201Google Scholar
[19] Zhu J Z, Lan Y Q, Du H J, Zhang Y H, Su J G 2016 Phys. Chem. Chem. Phys. 18 17991Google Scholar
[20] Shafiei M, Von Domaros M, Bratko D, Luzar A 2019 J. Chem. Phys. 150 074505Google Scholar
[21] Vanzo D, Luzar A, Bratko D 2021 Phys. Chem. Chem. Phys. 23 27005Google Scholar
[22] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁 2018 67 056102Google Scholar
Zhang Z Q, Li C, Liu H L, Ge D H, Cheng G G, Ding J N 2018 Acta Phys. Sin. 67 056102Google Scholar
[23] 章其林, 王瑞丰, 周同, 王允杰, 刘琪 2023 72 084207Google Scholar
Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207Google Scholar
[24] de Freitas D N, Mendonca B H S, Kohler M H, Barbosa M C, Matos M J S, Batista R J C, de Oliveira A B 2020 Chem. Phys. 537 110849Google Scholar
[25] Sahimi M, Ebrahimi F 2019 Phys. Rev. Lett. 122 214506Google Scholar
[26] Meng X W, Shen L 2020 Chem. Phys. Lett. 739 137029Google Scholar
[27] Ebrahimi F, Maktabdaran G R, Sahimi M 2020 J. Phys. Chem. B 124 8340Google Scholar
[28] Meng X W, Li Y, Shen L, Yang X Q 2020 EPL 131 20003Google Scholar
[29] Meng X W, Li Y 2022 Physica E 135 114980Google Scholar
[30] Wang F, Zhang X K, Li S, Su J Y 2022 J. Mol. Liq. 362 119719Google Scholar
[31] Hess B, Kutzner C, Van De Spoel D, Lindahl E 2008 J. Chem. Theory. Comp. 4 435Google Scholar
[32] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar
[33] Nose S 1984 J. Chem. Phys. 81 511Google Scholar
[34] Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar
[35] Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166Google Scholar
[36] Li J Y, Gong X J, Lu H J, Li D, Fang H P 2007 P. Natl. Acad. Sci. USA 104 3687Google Scholar
[37] Darden T A, York D M, Pedersen L G 1993 J. Chem. Phys. 98 10089Google Scholar
[38] Zhao Y Z, Su J Y 2018 J. Phys. Chem. C 122 22178Google Scholar
[39] Fang C, Huang D C, Su J Y 2020 J. Phys. Chem. Lett. 11 940Google Scholar
[40] Xie Z, Li Z, Li J Y, Kou J L, Yao J, Fan J T 2021 J. Chem. Phys. 154 024705Google Scholar
[41] Xie Z, Hao S Q, Wang W Y, Kou J L, Fan J T 2022 J. Mol. Liq. 363 119852Google Scholar
Catalog
Metrics
- Abstract views: 1683
- PDF Downloads: 86
- Cited By: 0