Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields

Ge Zhen-Jie Su Xu Bai Li-Hua

Citation:

Nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields

Ge Zhen-Jie, Su Xu, Bai Li-Hua
PDF
HTML
Get Citation
  • Electron correlation behaviors and recollision dynamics in nonsequential double ionization (NSDI) of Ar atoms in counter-rotating two-color elliptically polarized (TCEP) laser fields are investigated by using the classical ensemble model. The combined electric field in counter-rotating TCEP laser pulses traces out a trefoil pattern, i.e. the waveform in a period shows three leaves in different directions, and each leaf is called a lobe. Unlike counter-rotating two-color circularly polarized laser field, the combined electric field has no spatial symmetry. The amplitudes of the three field lobes and the angles between them are different. Thus, the returning electron mainly returns to the parent ion from one direction, and the electron momentum distributions show strong asymmetry. Numerical results show that the NSDI yield gradually decreases as the ellipticity increases, and the correlated behavior of the correlated electron momentum along the long axis of the laser polarization plane gradually evolves from correlation behavior mainly located in the first quadrant and the third quadrant to anti-correlation behavior mainly located in the second quadrant and fourth quadrant. In order to further understand the correlation behaviors of electron pairs, different characteristic times in the NSDI processes are discussed, respectively. It is found that single ionization events and recollision events gradually decrease, but single ionization time and recollision time change slightly. This may be the main reason for the decrease in NSDI yield. And as the ellipticity increases, the traveling time and the recollision energy gradually decrease, while the delay time increases. Therefore, we can conclude that ellipticity may be responsible for the NSDI process. In addition, further analysis finds that the shape of the trajectory becomes more and more triangular as the ellipticity increases due to the counter-rotating TCEP laser fields of the specific dynamical symmetries of the total net electric field. And it is found that whether it is a “short trajectory” or a “long trajectory”, more populations move to the second quadrant and the fourth quadrant as the ellipticity increases. The results show that increasing the ellipticity will gradually change the two electrons from emitting in the same direction to emitting in the opposite direction. This well demonstrates that both ellipticity and travelling time are responsible for the formation of the electron momentum distribution at the recollision time, meaning that both of them affect the emitted directions of both electrons.
      Corresponding author: Bai Li-Hua, lhbai@163.com
    [1]

    Sun F, Wei D, Zhang G Z, Ding X, Yao J Q 2016 Chin. Phys. Lett. 33 123202Google Scholar

    [2]

    Chen Y J, Yu S G, Sun R P, Gong C, Hua L Q, Lai X Y, Quan W, Liu X J 2016 Chin. Phys. Lett. 33 043301Google Scholar

    [3]

    Paulus G G, Nicklich W, Xu H L, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [4]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [5]

    Milošević D B, Paulus G G, Becker W 2003 Opt. Express 11 1418Google Scholar

    [6]

    He M R, Li Y, Zhou Y M, Li M, Cao W, Lu P X 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [7]

    Zhou Y M, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [8]

    Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar

    [9]

    Ghimire S, Reis D A 2019 Nat. Phys. 15 10Google Scholar

    [10]

    Peng M, Bai L, Guo Z 2021 Commun. Theor. Phys. 73 075501Google Scholar

    [11]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [12]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227Google Scholar

    [13]

    Li H Y, Wang B B, Chen J, Jiang H B, Li X F, Liu J, Gong Q H, Yan Z C, Fu P M 2007 Phys. Rev. A 76 033405Google Scholar

    [14]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [15]

    Li Y B, Qin L L, Liu A H, Zhang K, Tang Q B, Zhai C Y, Xu J K, Chen S, Yu B H, Chen J 2022 Chin. Phys. Lett. 39 093201Google Scholar

    [16]

    Ben S, Wang T, Xu T T, Guo J, Liu X S 2016 Opt. Express 24 7525Google Scholar

    [17]

    Ye D F, Liu J 2010 Phys. Rev. A 81 043402Google Scholar

    [18]

    Bergues B, Kübel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nat. Commun. 3 813Google Scholar

    [19]

    Ye D, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [20]

    Kulander K C, Cooper J, Schafer K J 1995 Phys. Rev. A 51 561Google Scholar

    [21]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [22]

    Chen J H, Xu T T, Han T, Sun Y, Xu Q Y, Liu X S 2020 Chin. Phys. B 29 013203Google Scholar

    [23]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 21 11382Google Scholar

    [24]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [25]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [26]

    Hao X L, Wang G Q, Jia X Y, Li W D, Liu J, Chen J 2009 Phys. Rev. A 80 023408Google Scholar

    [27]

    Gillen G D, Walker M A, Van Woerkom L D 2001 Phys. Rev. A 64 043413Google Scholar

    [28]

    Li Y, Feng L Q, Qiao Y 2019 Chem. Phys. 527 110497Google Scholar

    [29]

    Xu C Y, Feng L Q, Qiao Y, Li Y 2020 Eur. Phys. J. D 74 139Google Scholar

    [30]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schöffler M, Jahnke T, Dörner R 2016 Phys. Rev. Lett. 117 133202Google Scholar

    [31]

    Mancuso C A, Dorney K M, Dorney D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett. 117 133201Google Scholar

    [32]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett. 116 143005Google Scholar

    [33]

    Huang C, Zhong M M, Wu Z M 2018 Opt. Express 26 26045Google Scholar

    [34]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S, McIver J K 1995 Phys. Rev. A 51 R3414Google Scholar

    [35]

    Li B Q, Yang X, Ren X H, Zhang J T 2019 Opt. Express 27 32700Google Scholar

    [36]

    Peng M, Bai L H 2020 Chin. Opt. Lett. 18 110201Google Scholar

    [37]

    Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, Huang C 2022 Opt. Express 30 24898Google Scholar

    [38]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 71 193201Google Scholar

    Su, J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [39]

    Xu T T, Chen J H, Pan X F, Zhang H D, Ben S, Liu X S 2018 Chin. Phys. B 27 093201Google Scholar

    [40]

    Gazibegović-Busuladži A, Busuladžić M, Čerkić A, Hasović E, Becker W, Milošević D B 2019 J. Phys. Conf. Ser. 1206 012003Google Scholar

    [41]

    Milošević D B, Becker W 2020 Phys. Rev. A 102 023107Google Scholar

    [42]

    Ho P J, Panfili R, Haan S L, Eberly J H 2005 Phys. Rev. Lett. 94 093002Google Scholar

    [43]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [44]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402Google Scholar

    [45]

    辛国国, 叶地发, 赵清, 刘杰 2011 60 093204Google Scholar

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 093204Google Scholar

    [46]

    Ben S, Guo P Y, Pan X F, Xu T T, Song K L, Liu X S 2017 Chem. Phys. Lett. 679 38Google Scholar

    [47]

    Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [48]

    Zhu Q Y, Xu T T, Ben S, Chen J H, Song K L, Liu X S 2018 Opt. Commun. 426 602Google Scholar

  • 图 1  (a)—(d)不同椭偏率下, 反旋TCEP激光场的电场结构和负矢势曲线, 三瓣代表电场结构, 三角形代表反旋TCEP激光场的负矢势; (e)对于不同椭偏率的反旋TCEP激光场下, Ar原子随激光强度变化的双电离产量曲线

    Figure 1.  (a)–(d) Electric field structure and negative vector potential curve of counter-rotating TCEP laser fields for different ellipticities. The three lobes represent the electric field structure, and the triangle structure represents the negative vector potential of the counter-rotating TCEP laser field. (e) The yield of NSDI for Ar as a function of laser intensity in counter-rotating TCEP laser fields for different ellipticities.

    图 2  不同椭偏率的反旋TCEP激光场中电子动量分布(实线为反旋TCEP激光场的负矢势$ - {\boldsymbol A}(t)$) (a) $\varepsilon = 0.2$; (b) $\varepsilon = 0.4$; (c) $\varepsilon = 0.6$; (d) $\varepsilon = 0.8$

    Figure 2.  Momentum distributions at different ellipticities in counter-rotating TCEP laser fields: (a) $\varepsilon = 0.2$; (b) $\varepsilon = 0.4$; (c) $\varepsilon = $$ 0.6$; (d) $\varepsilon = 0.8$. The solid line represents the negative vector potential $ - {\boldsymbol A}(t)$of counter-rotating TCEP laser fields.

    图 3  (a)—(d)不同椭偏率下, Ar原子单电离时刻${t_{{\text{SI}}}}$的分布; (e)—(h)不同椭偏率下, Ar原子重碰撞时刻${t_{{\text{RC}}}}$的分布

    Figure 3.  (a)–(d) Statistical distribution of the single ionization time ${t_{{\text{SI}}}}$ for Ar atoms with different ellipticities; (e)–(h) statistical distribution of the electron recollision time ${t_{{\text{RC}}}}$ for Ar atoms with different ellipticities.

    图 4  (a)—(d)不同椭偏率下, 两个电子在x方向上的关联电子动量分布; (e)—(h)不同椭偏率下, 两个电子在y方向上的关联电子动量分布

    Figure 4.  (a)–(d) Correlated momentum distributions of the electrons in the x direction for different ellipticities; (e)–(h) correlated momentum distributions of the electrons in the y direction for different ellipticities.

    图 5  (a)—(d)不同椭偏率下, Ar原子旅行时间(${t_{{\text{RC}}}} - {t_{{\text{SI}}}}$)的分布; (e)—(h)不同椭偏率下, 返回电子重碰撞能量的分布; (i)—(l)不同椭偏率下, Ar原子延迟时间(${t_{{\text{DI}}}} - {t_{{\text{RC}}}}$)的分布

    Figure 5.  (a)–(d) Statistical distribution of the traveling time (${t_{{\text{RC}}}} - {t_{{\text{SI}}}}$) for Ar atoms with different ellipticities; (e)–(h) distributions of the returning electron recollision energy with different ellipticities; (i)–(l) statistical distribution of the delay time $({t_{{\text{DI}}}} - {t_{{\text{RC}}}}$) for Ar atoms with different ellipticities.

    图 6  不同椭偏率的反旋TCEP激光场中两个电子轨迹 (a)—(d) 上面一行是“短轨迹”( ${t_{{\text{RC}}}} - {t_{{\text{SI}}}} < 0.2 \;{\text{o}}{\text{.c}}{.}$)的电子轨迹; (e)—(h)下面一行是“长轨迹”( ${t_{{\text{RC}}}} - {t_{{\text{SI}}}} \geqslant 0.2\; {\text{o}}{\text{.c}}{.}$)的电子轨迹

    Figure 6.  Trajectory of the two electrons at different ellipticities in counter-rotating TCEP laser fields: (a)–(d) The top row shows trajectories of the ionized electron coming back to the parent ion core with the “short trajectory” (${t_{{\text{RC}}}} - {t_{{\text{SI}}}} < 0.2 \;{\text{o}}{\text{.c}}{.}$); (e)–(h) the bottom row shows trajectories of the ionized electron coming back to the parent ion core with the “long trajectory” $({t_{{\text{RC}}}} - {t_{{\text{SI}}}} \geqslant 0.2\; {\text{o}}{\text{.c}}{.}$).

    图 7  不同椭偏率下, 两个电子在x方向上的关联电子动量分布 (a)—(d)上面一行是“短轨迹”( ${t_{{\text{RC}}}} - {t_{{\text{SI}}}} < 0.2\; {\text{o}}{\text{.c}}{.}$)的关联电子动量分布; (e)—(h)下面一行是“长轨迹”( ${t_{{\text{RC}}}} - {t_{{\text{SI}}}} \geqslant 0.2\; {\text{o}}{\text{.c}}{.}$)的关联电子动量分布

    Figure 7.  Correlated momentum distributions of the electrons in the x direction for different ellipticities: (a)–(d) The top row shows correlated momentum distributions with the “short trajectory” (${t_{{\text{RC}}}} - {t_{{\text{SI}}}} < 0.2 \;{\text{o}}{\text{.c}}{.}$); (e)–(h) the bottom row shows correlated momentum distributions with the “long trajectory”(${t_{{\text{RC}}}} - {t_{{\text{SI}}}} \geqslant 0.2\; {\text{o}}{\text{.c}}{.}$).

    Baidu
  • [1]

    Sun F, Wei D, Zhang G Z, Ding X, Yao J Q 2016 Chin. Phys. Lett. 33 123202Google Scholar

    [2]

    Chen Y J, Yu S G, Sun R P, Gong C, Hua L Q, Lai X Y, Quan W, Liu X J 2016 Chin. Phys. Lett. 33 043301Google Scholar

    [3]

    Paulus G G, Nicklich W, Xu H L, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [4]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [5]

    Milošević D B, Paulus G G, Becker W 2003 Opt. Express 11 1418Google Scholar

    [6]

    He M R, Li Y, Zhou Y M, Li M, Cao W, Lu P X 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [7]

    Zhou Y M, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [8]

    Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar

    [9]

    Ghimire S, Reis D A 2019 Nat. Phys. 15 10Google Scholar

    [10]

    Peng M, Bai L, Guo Z 2021 Commun. Theor. Phys. 73 075501Google Scholar

    [11]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [12]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227Google Scholar

    [13]

    Li H Y, Wang B B, Chen J, Jiang H B, Li X F, Liu J, Gong Q H, Yan Z C, Fu P M 2007 Phys. Rev. A 76 033405Google Scholar

    [14]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [15]

    Li Y B, Qin L L, Liu A H, Zhang K, Tang Q B, Zhai C Y, Xu J K, Chen S, Yu B H, Chen J 2022 Chin. Phys. Lett. 39 093201Google Scholar

    [16]

    Ben S, Wang T, Xu T T, Guo J, Liu X S 2016 Opt. Express 24 7525Google Scholar

    [17]

    Ye D F, Liu J 2010 Phys. Rev. A 81 043402Google Scholar

    [18]

    Bergues B, Kübel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nat. Commun. 3 813Google Scholar

    [19]

    Ye D, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [20]

    Kulander K C, Cooper J, Schafer K J 1995 Phys. Rev. A 51 561Google Scholar

    [21]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [22]

    Chen J H, Xu T T, Han T, Sun Y, Xu Q Y, Liu X S 2020 Chin. Phys. B 29 013203Google Scholar

    [23]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 21 11382Google Scholar

    [24]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [25]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [26]

    Hao X L, Wang G Q, Jia X Y, Li W D, Liu J, Chen J 2009 Phys. Rev. A 80 023408Google Scholar

    [27]

    Gillen G D, Walker M A, Van Woerkom L D 2001 Phys. Rev. A 64 043413Google Scholar

    [28]

    Li Y, Feng L Q, Qiao Y 2019 Chem. Phys. 527 110497Google Scholar

    [29]

    Xu C Y, Feng L Q, Qiao Y, Li Y 2020 Eur. Phys. J. D 74 139Google Scholar

    [30]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schöffler M, Jahnke T, Dörner R 2016 Phys. Rev. Lett. 117 133202Google Scholar

    [31]

    Mancuso C A, Dorney K M, Dorney D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett. 117 133201Google Scholar

    [32]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett. 116 143005Google Scholar

    [33]

    Huang C, Zhong M M, Wu Z M 2018 Opt. Express 26 26045Google Scholar

    [34]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S, McIver J K 1995 Phys. Rev. A 51 R3414Google Scholar

    [35]

    Li B Q, Yang X, Ren X H, Zhang J T 2019 Opt. Express 27 32700Google Scholar

    [36]

    Peng M, Bai L H 2020 Chin. Opt. Lett. 18 110201Google Scholar

    [37]

    Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, Huang C 2022 Opt. Express 30 24898Google Scholar

    [38]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 71 193201Google Scholar

    Su, J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [39]

    Xu T T, Chen J H, Pan X F, Zhang H D, Ben S, Liu X S 2018 Chin. Phys. B 27 093201Google Scholar

    [40]

    Gazibegović-Busuladži A, Busuladžić M, Čerkić A, Hasović E, Becker W, Milošević D B 2019 J. Phys. Conf. Ser. 1206 012003Google Scholar

    [41]

    Milošević D B, Becker W 2020 Phys. Rev. A 102 023107Google Scholar

    [42]

    Ho P J, Panfili R, Haan S L, Eberly J H 2005 Phys. Rev. Lett. 94 093002Google Scholar

    [43]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [44]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402Google Scholar

    [45]

    辛国国, 叶地发, 赵清, 刘杰 2011 60 093204Google Scholar

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 093204Google Scholar

    [46]

    Ben S, Guo P Y, Pan X F, Xu T T, Song K L, Liu X S 2017 Chem. Phys. Lett. 679 38Google Scholar

    [47]

    Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [48]

    Zhu Q Y, Xu T T, Ben S, Chen J H, Song K L, Liu X S 2018 Opt. Commun. 426 602Google Scholar

  • [1] Liu Yi-Jun, Chen Yi-Wei, Zhu Yu-Jian, Huang Yan, An Dong-Dong, Li Qing-Xin, Gan Qi-Kang, Zhu Wang, Song Jun-Wei, Wang Kai-Yuan, Wei Ling-Nan, Zong Qi-Jun, Liu Shuo-Han, Li Shi-Wei, Liu Zhi, Zhang Qi, Xu Ying-Hai, Cao Xin-Yu, Yang Ao, Wang Hao-Lin, Yang Bing, Andy Shen, Yu Ge-Liang, Wang Lei. Isospin polarized Chern insulator state of C = 4 in twisted double bilayer graphene. Acta Physica Sinica, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [2] Zhong Guo-Hua, Lin Hai-Qing. Aromatic superconductors: Electron-phonon coupling and electronic correlations. Acta Physica Sinica, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [3] Li Ying-Bin, Zhang Ke, Chen Hong-Mei, Kang Shuai-Jie, Li Zheng-Fa, Cheng Jian-Guo, Wu Yin-Meng, Zhai Chun-Yang, Tang Qing-Bin, Xu Jing-Kun, Yu Ben-Hai. Nonsequential double ionization of atoms driven by spatially inhomogeneous laser fields. Acta Physica Sinica, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [4] Ma Kun, Zhu Lin-Fan, Xie Lu-You. Non-dipole effects on angular distribution of photoelectrons in sequential two-photon double ionization of Ar atom and K+ ion. Acta Physica Sinica, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [5] Huang Xue-Fei, Su Jie, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field. Acta Physica Sinica, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [6] Su Jie, Liu Zi-Chao, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [7] Zeng Xue, Su Jie, Huang Xue-Fei, Pang Hui-Ling, Huang Cheng. Frequency-ratio-dependent ultrafast dynamics in nonsequential double ionization by co-rotating two-color circularly polarized laser fields. Acta Physica Sinica, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [8] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [9] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] Zhang Bin, Zhao Jian, Zhao Zeng-Xiu. Multiconfiguration time-dependent Hartree-Fock treatment of electron correlation in strong-field ionization of H2 molecules. Acta Physica Sinica, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [11] Jin Fa-Cheng, Wang Bing-Bing. Frequency-domain view of nonsequential double ionization in intense laser fields. Acta Physica Sinica, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [12] Wu Shao-Quan, Fang Dong-Kai, Zhao Guo-Ping. Effect of electronic correlations on magnetotransport through a parallel double quantum dot. Acta Physica Sinica, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [13] Yu Ben-Hai, Li Ying-Bin. Laser intensity dependence of nonsequential double ionization of argon atoms by elliptically polarized laser pulses. Acta Physica Sinica, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [14] Yu Ben-Hai, Li Ying-Bin, Tang Qing-Bin. The nonsequential double ionization of argon atoms with elliptically polarized laser pulse. Acta Physica Sinica, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [15] Xin Guo-Guo, Zhao Qing, Liu Jie. Maximum correlation at the transition to the saturation regime of nonsequential double ionization. Acta Physica Sinica, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [16] Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong. Nonsequential double ionization of argon atom below the recollision threshold. Acta Physica Sinica, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [17] Ye Di-Fa, Liu Jie, Xin Guo-Guo, Zhao Qing. The role of multi-return induced collision-ionization in atomic nonsequential double ionization. Acta Physica Sinica, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [18] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [19] Li Hong-Yun, Wang Bing-Bing, Jiang Hong-Bing, Chen Jing, Li Xiao-Feng, Liu Jie, Gong Qi-Huang, Fu Pan-Ming. The effect of static electric field on nonsequential double ionization. Acta Physica Sinica, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [20] Wang Qi, Chen Jian-Xin, Xia Yuan-Qin, Chen De-Ying. . Acta Physica Sinica, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
Metrics
  • Abstract views:  1870
  • PDF Downloads:  46
  • Cited By: 0
Publishing process
  • Received Date:  28 September 2023
  • Accepted Date:  28 January 2024
  • Available Online:  04 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回
Baidu
map