Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field simulation on fission gas release behavior of large grain UO2 fuel

Liu Dong-Kun Wang Qing-Yu Zhang Tian Zhou Yu Wang Xiang

Citation:

Phase-field simulation on fission gas release behavior of large grain UO2 fuel

Liu Dong-Kun, Wang Qing-Yu, Zhang Tian, Zhou Yu, Wang Xiang
PDF
HTML
Get Citation
  • In order to predict the release behavior of fission gas in large grain UO2 fuel and provide support for the development of accident tolerant fuel, a phase-field model is used to simulate the release behavior of fission gas in the microstructure of UO2 polycrystalline in this work. This model adopts a set of coupled Cahn-Hilliard equations and Allen-Cahn equations, using conserved field variables to represent the distribution of fission gas and vacancies, and distinguishing bubble phase from matrix phase by using order parameters. This model focuses on investigating the effects of different grain sizes, temperature conditions, and diffusion coefficients on the release behavior of fission gas, demonstrating the nucleation, growth, and fusion behavior of bubbles. Simulation results are obtained for fuel porosity, bubble coverage on grain boundaries, and average bubble radius at a certain degree of burnup. The results show that temperature and diffusion coefficient have a significant influence on porosity and bubble coverage on grain boundaries. When the diffusion coefficient is high, grain size also has a significant influence on fission gas release behavior. And when the diffusion coefficient is low, the influence of grain size is not significant. In addition, the distribution of fission gas bubbles under high burnup obtained through this model is also in good agreement with experimental result. The model can predict the behavior of fission gas release in large grain UO2 fuel.
      Corresponding author: Wang Qing-Yu, wangqingyu@hrbeu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 3072022JC1502).
    [1]

    Rest J 2010 J. Nucl. Mater. 402 179Google Scholar

    [2]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [3]

    Rest J, Hofman G L 1999 Nucl. Technol. 126 88Google Scholar

    [4]

    Pastore G, Luzzi L, Di Marcello V, van Uffelen P 2013 Nucl. Eng. Des. 256 75Google Scholar

    [5]

    Piro M H, Sunderland D, Livingstone S, Sercombe J, Revie R W, Quastel A, Terrani K A, Judge C 2020 Comprehensive Nuclear Materials (2nd Ed.) (Amsterdam: Elsevier) p248

    [6]

    何文, 伍晓勇, 吴璐, 温榜, 朱伟, 张伟, 潘荣剑, 王桢, 黄伟杰 2017 核动力工程 38 170Google Scholar

    He W, Wu X Y, Wu L, Wen B, Zhu W, Zhang W, Pan R J, Wang Z, Huang W J 2017 Nucl. Power Eng. 38 170Google Scholar

    [7]

    Killeen J C 1980 J. Nucl. Mater. 88 177Google Scholar

    [8]

    Cooper M W D, Pastore G, Che Y, Matthews C, Forslund A, Stanek C R, Shirvan K, Tverberg T, Gamble K A, Mays B, Andersson D A 2021 J. Nucl. Mater. 545 152590Google Scholar

    [9]

    Aagesen L K, Schwen D, Tonks M R, Zhang Y 2019 Comput. Mater. Sci. 161 35Google Scholar

    [10]

    Yuda R, Harada H, Hirai M, Hosokawa T, Une K, Kashibe S, Shimizu S, Kubo T 1997 J. Nucl. Mater. 248 262Google Scholar

    [11]

    庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超 2022 材料导报 36 5Google Scholar

    Pang H, Xin Y, Yue H F, Peng H, Pu Z P, Qiu X, Sun Z P, Liu S C 2022 Mater. Rev. 36 5Google Scholar

    [12]

    Delafoy C, Dewes P, Miles T 2007 Proceedings of the 2007 LWR Fuel Performance Meeting/TopFuel 2007 San Francisco, CA, United States, September 30–October 3, 2007 p1

    [13]

    Kashibe S, Une K 1998 J. Nucl. Mater. 254 234Google Scholar

    [14]

    Che Y, Pastore G, Hales J, Shirvan K 2018 Nucl. Eng. Des. 337 271Google Scholar

    [15]

    Moelans N, Blanpain B, Wollants P 2008 Comput. Coupling Phase Diagrams Thermochem 32 268Google Scholar

    [16]

    郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华 2022 71 096401Google Scholar

    Guo C, Kang C R, Gao Y, Zhang Y C, Deng Y Y, Ma C, Xu C J, Liang S H 2022 Acta Phys. Sin. 71 096401Google Scholar

    [17]

    Hu S, Henager Jr C H 2009 J. Nucl. Mater. 394 155Google Scholar

    [18]

    Millett P C, El-Azab A, Rokkam S, Tonks M, Wolf D 2011 Comput. Mater. Sci. 50 949Google Scholar

    [19]

    Jiang Y B, Liu W B, Li W J, Sun Z Y, Xin Y, Chen P H, Yun D 2021 Comput. Mater. Sci. 188 110176.Google Scholar

    [20]

    Zhao J J, Sun D, Xi L, Chen P, Zhao J J, Wang Y Y 2023 Phys. Chem. Chem. Phys. 25 14928Google Scholar

    [21]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [22]

    Li Y, Hu S, Montgomery R, Gao F, Sun X 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 303 62Google Scholar

    [23]

    Kittel C, Kroemer H 1980 Thermal Physics (New York: WH Freeman and Company) pp287–306

    [24]

    Moelans N 2011 Acta Mater. 59 1077Google Scholar

    [25]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113Google Scholar

    [26]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [27]

    Allen S M, Cahn J W 1972 Acta Metall. 20 423Google Scholar

    [28]

    Allen S M, Cahn J W 1973 Scr. Metall. 7 1261Google Scholar

    [29]

    Turnbull J A, Friskney C A, Findlay J R, Johnson F A, Walter A J 1982 J. Nucl. Mater. 107 168Google Scholar

    [30]

    Turnbull J A, White R J, Wise C 1989 Technical Committee on Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions Preston, United Kingdom, September 18–22, 1988 p174

    [31]

    INTRODUCTION TO COMSOL Multiphysics, COMSOL Co Ltd. https://cdn.comsol.com/doc/5.2/IntroductionToCOMSOLMultiphysics.zh_CN.pdf [2023-11-1]

    [32]

    Millett P C, El-Azab A, Wolf D 2011 Comput. Mater. Sci. 50 960Google Scholar

    [33]

    Sagui C, Grant M 1999 Phys. Rev. E 59 4175.Google Scholar

    [34]

    Bullough R, Nelson R S 1974 Phys. Technol. 5 29Google Scholar

    [35]

    Zacharie I, Lansiart S, Combette P, Trotabas M, Coster M, Groos M 1998 J. Nucl. Mater. 255 85Google Scholar

    [36]

    Sheng J, Wang Y C, Liu Y, Wu S, Xu K, Chen Z H, Bo S, Liu H F, Song H F 2022 Comput. Mater. Sci. 213 111663Google Scholar

    [37]

    Wu S, Sheng J, Yang C, Shi X, Huang H, Liu Y, Song H 2022 Front. Mater. 9 916593Google Scholar

    [38]

    姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪 2022 71 026103Google Scholar

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin. 71 026103Google Scholar

  • 图 1  序参量ηϕi的取值在相场模型中的表现

    Figure 1.  Representation of the values of order parameters η and ϕi in the phase-field model.

    图 2  自由能密度随浓度(cv, cg)分布的变化, 曲线最低点的横坐标为平衡浓度, 随着cg增加, $ c_{\text{v}}^{{\text{b, eq}}} $逐渐减小, f bubble,v的图像(蓝色虚线)将向左平移

    Figure 2.  Variation of free energy density with concentration (cv, cg) distribution, the abscissa of the lowest point of the curve is the equilibrium concentration. As cg increases, $ c_{\text{v}}^{{\text{b, eq}}} $ gradually decreases, and the image of f bubble,v (blue dashed line) will shift to the left.

    图 3  T = 1276 K条件下直径5 μm晶粒与气泡随时间演化分布 (a) τ = 0 s; (b) τ = 140 s; (c) τ = 160 s; (d) τ = 200 s; (e) τ = 300 s; (f) τ = 550 s

    Figure 3.  Distribution of grain with a diameter of 5 μm and bubble evolution over time at T = 1276 K: (a) τ = 0 s; (b) τ = 140 s; (c) τ = 160 s; (d) τ = 200 s; (e) τ = 300 s; (f) τ = 550 s.

    图 4  空位(cv, (a), (c))与裂变气体(cg, (b), (d))在τ = 140 s与τ = 550 s的浓度分布(不同的颜色代表浓度的取值) (a), (b) τ = 140 s; (c), (d) τ = 550 s

    Figure 4.  Concentration distribution of vacancies (cv, (a) and (c)) and fission gases (cg, (b) and (d)) at τ = 140 s and τ = 550 s, different color represent the value of concentration: (a), (b) τ = 140 s; (c), (d) τ = 550 s.

    图 5  (a) 整个模拟区域内的平均自由能密度随时间的变化; (b) 总自由能密度在整个模拟区域分布, 颜色栏为取值范围; (c)某一气泡径向自由能密度分布

    Figure 5.  (a) Variation of average free energy density over time in simulation area; (b) distribution of the total free energy density in simulation area, the color bar represents the range of values; (c) radial free energy density distribution of a certain bubble.

    图 9  相同温度不同晶粒尺寸, (a), (c), (e)孔隙度与(b), (d), (f)晶界气泡覆盖率随时间演化 (a), (b) T = 1276 K; (c), (d) T = 1476 K; (e), (f) T = 1676 K

    Figure 9.  Evolution of (a), (c), (e) porosity and (b), (d), (f) bubble coverage on GB over time for the same temperature but different grain sizes: (a), (b) T = 1276 K; (c), (d) T = 1476 K; (e), (f) T = 1676 K.

    图 6  T = 1276, 1476, 1676 K条件下直径10 μm晶粒与气泡分布图 (a) T = 1276 K, τ = 180 s; (b) T = 1476 K, τ = 180 s; (c) T = 1676 K, τ = 180 s; (d) T = 1276 K, τ = 500 s; (e) T = 1476 K, τ = 500 s; (f) T = 1676 K, τ = 500 s

    Figure 6.  Distribution of grains with a diameter of 10 μm and bubbles under T = 1276, 1476, 1676 K: (a) T = 1276 K, τ = 180 s; (b) T = 1476 K, τ = 180 s; (c) T = 1676 K, τ = 180 s; (d) T = 1276 K, τ = 500 s; (e) T = 1476 K, τ = 500 s; (f) T = 1676 K, τ = 500 s.

    图 7  直径10 μm晶粒3种温度条件下(a)孔隙度与(b)晶界气泡覆盖率随时间演化

    Figure 7.  Evolution of (a) porosity and (b) bubble coverage on grain boundaries over time under three temperature conditions for grains with a diameter of 10 μm.

    图 8  T = 1476 K, τ = 250 s时晶粒与气泡分布 (a) 5 μm; (b) 10 μm; (c) 15 μm; (d) 20 μm

    Figure 8.  Distribution of grains and bubbles at τ = 250 s, T = 1476 K: (a) 5 μm; (b) 10 μm; (c) 15 μm; (d) 20 μm.

    图 10  采用$ {D^{{\text{undoped}}}} $与$ {D^{{\text{doped}}}} $晶粒与气泡分布对比 (a) T = 1676 K, 15 μm, $ {D^{{\text{undoped}}}} $; (b) T = 1676 K, 15 μm, $ {D^{{\text{doped}}}} $; (c) T = 1476 K, 20 μm, $ {D^{{\text{undoped}}}} $; (d) T = 1476 K, 20 μm, $ {D^{{\text{doped}}}} $

    Figure 10.  Comparison of the distribution of grains and bubbles using $ {D^{{\text{undoped}}}} $ and $ {D^{{\text{doped}}}} $: (a) T = 1676 K, 15 μm, $ {D^{{\text{undoped}}}} $; (b) T = 1676 K, 15 μm, $ {D^{{\text{doped}}}} $; (c) T = 1476 K, 20 μm, $ {D^{{\text{undoped}}}} $; (d) T = 1476 K, 20 μm, $ {D^{{\text{doped}}}} $.

    图 11  对于直径15 μm与20 μm晶粒, (a), (c) 孔隙度与(b), (d)晶界气泡覆盖率随时间演化 (a), (b) 直径15 μm; (c), (d) 直径20 μm

    Figure 11.  Evolution of (a), (c) porosity and (b), (d) bubble coverage on grain boundary with time for grains with a diameter of 15 μm and 20 μm: (a), (b) Diameter 15 μm; (c), (d) diameter 20 μm.

    表 1  模拟采用的部分参数

    Table 1.  Parameters used in simulation.

    参数符号
    玻尔兹曼常量/(J·K–1)kB1.3806 × 10–23
    理想气体常数/(J·mol–1·K–1)R8.3145
    UO2晶胞U原子体积/ nm³Va0.0409
    空位形成能/eV$ E_{\text{v}}^{\text{f}} $5.1
    气体原子缺陷形成能/eV$ E_{\text{g}}^{\text{f}} $10.31
    扩散界面系数aGB1.2
    as0.8
    自由能势垒系数/(J·m–3)m3.0 × 107
    梯度项系数/(J·m–3)κϕ3.38 × 10–7
    κv, κg, κη1.69 × 10–6
    迁移率/(m3·J–1·s–1)Lη, Lϕ1.56 × 10–11
    裂变率密度/(次裂变·m3·s–1)$ \dot F $1.09 × 1019
    Xe产额Y0.27
    DownLoad: CSV

    表 2  不同温度下采用的扩散系数

    Table 2.  Diffusion coefficients used at different temperatures.

    温度T/K$ {D^{{\text{undoped}}}} $/(m2·s–1)$ {D^{{\text{doped}}}} $/(m2·s–1)
    12768.72 × 10–218.72 × 10–21
    14761.583 × 10–192.4593 × 10–19
    16765.7461 × 10–195.0906 × 10–19
    DownLoad: CSV
    Baidu
  • [1]

    Rest J 2010 J. Nucl. Mater. 402 179Google Scholar

    [2]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [3]

    Rest J, Hofman G L 1999 Nucl. Technol. 126 88Google Scholar

    [4]

    Pastore G, Luzzi L, Di Marcello V, van Uffelen P 2013 Nucl. Eng. Des. 256 75Google Scholar

    [5]

    Piro M H, Sunderland D, Livingstone S, Sercombe J, Revie R W, Quastel A, Terrani K A, Judge C 2020 Comprehensive Nuclear Materials (2nd Ed.) (Amsterdam: Elsevier) p248

    [6]

    何文, 伍晓勇, 吴璐, 温榜, 朱伟, 张伟, 潘荣剑, 王桢, 黄伟杰 2017 核动力工程 38 170Google Scholar

    He W, Wu X Y, Wu L, Wen B, Zhu W, Zhang W, Pan R J, Wang Z, Huang W J 2017 Nucl. Power Eng. 38 170Google Scholar

    [7]

    Killeen J C 1980 J. Nucl. Mater. 88 177Google Scholar

    [8]

    Cooper M W D, Pastore G, Che Y, Matthews C, Forslund A, Stanek C R, Shirvan K, Tverberg T, Gamble K A, Mays B, Andersson D A 2021 J. Nucl. Mater. 545 152590Google Scholar

    [9]

    Aagesen L K, Schwen D, Tonks M R, Zhang Y 2019 Comput. Mater. Sci. 161 35Google Scholar

    [10]

    Yuda R, Harada H, Hirai M, Hosokawa T, Une K, Kashibe S, Shimizu S, Kubo T 1997 J. Nucl. Mater. 248 262Google Scholar

    [11]

    庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超 2022 材料导报 36 5Google Scholar

    Pang H, Xin Y, Yue H F, Peng H, Pu Z P, Qiu X, Sun Z P, Liu S C 2022 Mater. Rev. 36 5Google Scholar

    [12]

    Delafoy C, Dewes P, Miles T 2007 Proceedings of the 2007 LWR Fuel Performance Meeting/TopFuel 2007 San Francisco, CA, United States, September 30–October 3, 2007 p1

    [13]

    Kashibe S, Une K 1998 J. Nucl. Mater. 254 234Google Scholar

    [14]

    Che Y, Pastore G, Hales J, Shirvan K 2018 Nucl. Eng. Des. 337 271Google Scholar

    [15]

    Moelans N, Blanpain B, Wollants P 2008 Comput. Coupling Phase Diagrams Thermochem 32 268Google Scholar

    [16]

    郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华 2022 71 096401Google Scholar

    Guo C, Kang C R, Gao Y, Zhang Y C, Deng Y Y, Ma C, Xu C J, Liang S H 2022 Acta Phys. Sin. 71 096401Google Scholar

    [17]

    Hu S, Henager Jr C H 2009 J. Nucl. Mater. 394 155Google Scholar

    [18]

    Millett P C, El-Azab A, Rokkam S, Tonks M, Wolf D 2011 Comput. Mater. Sci. 50 949Google Scholar

    [19]

    Jiang Y B, Liu W B, Li W J, Sun Z Y, Xin Y, Chen P H, Yun D 2021 Comput. Mater. Sci. 188 110176.Google Scholar

    [20]

    Zhao J J, Sun D, Xi L, Chen P, Zhao J J, Wang Y Y 2023 Phys. Chem. Chem. Phys. 25 14928Google Scholar

    [21]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [22]

    Li Y, Hu S, Montgomery R, Gao F, Sun X 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 303 62Google Scholar

    [23]

    Kittel C, Kroemer H 1980 Thermal Physics (New York: WH Freeman and Company) pp287–306

    [24]

    Moelans N 2011 Acta Mater. 59 1077Google Scholar

    [25]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113Google Scholar

    [26]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [27]

    Allen S M, Cahn J W 1972 Acta Metall. 20 423Google Scholar

    [28]

    Allen S M, Cahn J W 1973 Scr. Metall. 7 1261Google Scholar

    [29]

    Turnbull J A, Friskney C A, Findlay J R, Johnson F A, Walter A J 1982 J. Nucl. Mater. 107 168Google Scholar

    [30]

    Turnbull J A, White R J, Wise C 1989 Technical Committee on Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions Preston, United Kingdom, September 18–22, 1988 p174

    [31]

    INTRODUCTION TO COMSOL Multiphysics, COMSOL Co Ltd. https://cdn.comsol.com/doc/5.2/IntroductionToCOMSOLMultiphysics.zh_CN.pdf [2023-11-1]

    [32]

    Millett P C, El-Azab A, Wolf D 2011 Comput. Mater. Sci. 50 960Google Scholar

    [33]

    Sagui C, Grant M 1999 Phys. Rev. E 59 4175.Google Scholar

    [34]

    Bullough R, Nelson R S 1974 Phys. Technol. 5 29Google Scholar

    [35]

    Zacharie I, Lansiart S, Combette P, Trotabas M, Coster M, Groos M 1998 J. Nucl. Mater. 255 85Google Scholar

    [36]

    Sheng J, Wang Y C, Liu Y, Wu S, Xu K, Chen Z H, Bo S, Liu H F, Song H F 2022 Comput. Mater. Sci. 213 111663Google Scholar

    [37]

    Wu S, Sheng J, Yang C, Shi X, Huang H, Liu Y, Song H 2022 Front. Mater. 9 916593Google Scholar

    [38]

    姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪 2022 71 026103Google Scholar

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin. 71 026103Google Scholar

  • [1] Liao Yu-Xuan, Shen Wen-Long, Wu Xue-Zhi, La Yong-Xiao, Liu Wen-Bo. Phase-field simulation of sintering process of ceramic composite fuel. Acta Physica Sinica, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [2] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [3] Guo Can, Kang Chen-Rui, Gao Ying, Zhang Yi-Chi, Deng Ying-Yuan, Ma Chao, Xu Chun-Jie, Liang Shu-Hua. A phase-field model for in-situ reaction process of metal-matrix composite materials. Acta Physica Sinica, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [4] Jiang Yan-Bo, Liu Wen-Bo, Sun Zhi-Peng, La Yong-Xiao, Yun Di. Phase-field simulation of void evolution in UO2 under applied stress. Acta Physica Sinica, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [5] Zhang Geng, Wang Qiao, Sha Li-Ting, Li Ya-Jie, Wang Da, Shi Si-Qi. Phase-field model and its application in electrochemical energy storage materials. Acta Physica Sinica, 2020, 69(22): 226401. doi: 10.7498/aps.69.20201411
    [6] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [7] Zhang Zhong, Wang Huan, Wang Kai-Yuan, An Huan, Liu Biao, Wu Jian-Chun, Zou Yu. Influence of Zr doping on solubility of Xe in UO2: A first-principle study. Acta Physica Sinica, 2018, 67(4): 046101. doi: 10.7498/aps.67.20171863
    [8] Chen Zhen-Fei, Feng Lu, Zhao Yang, Qi Hong-Rui. Analysis of epitaxial morphology evolution due to stress and diffusion. Acta Physica Sinica, 2015, 64(13): 138103. doi: 10.7498/aps.64.138103
    [9] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [10] Pan Shi-Yan, Zhu Ming-Fang. Quantitative phase-field model for dendritic growth with two-sided diffusion. Acta Physica Sinica, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [11] Zhang Xian-Gang, Zong Ya-Ping, Wu Yan. A model for releasing of stored energy and microstructure evolution during recrystallization by phase-field simulation. Acta Physica Sinica, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [12] Wei Cheng-Yang, Li Sai-Yi. Effect of temperature gradient on grain growth behavior from phase field simulations. Acta Physica Sinica, 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [13] Chen Qiu-Yun, Lai Xin-Chun, Wang Xiao-Ying, Zhang Yong-Bin, Tan Shi-Yong. First-principles study of the electronic structure and optical properties of UO2. Acta Physica Sinica, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [14] Chen Yun, Kang Xiu-Hong, Xiao Na-Min, Zheng Cheng-Wu, Li Dian-Zhong. Phase field modelling of grain growth in polycrystalline material. Acta Physica Sinica, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [15] Zhao Da-Wen, Li Jin-Fu. Phase-field modeling of the effect of liquid-solid interface anisotropies on free dendritic growth. Acta Physica Sinica, 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [16] Feng Li, Wang Zhi-Ping, Lu Yang, Zhu Chang-Sheng. Phase-field model of isothermal solidification of binary alloy with multiple grains. Acta Physica Sinica, 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [17] Long Wen-Yuan, Cai Qi-Zhou, Chen Li-Liang, Wei Bo-Kang. Phase-field modeling of isothermal solidification in binary alloy. Acta Physica Sinica, 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
    [18] WANG HONG-YAN, GAO TAO, YI YOU-GEN, TAN MING-LIANG, ZHU ZHENG-HE, FU YI-BEI, WANG XIAO-LIN, SUN YING. ANALYTICAL POTENTIAL ENERGY FUNCTION FOR THE GROUND STATE (3Σ+u) OF UO2. Acta Physica Sinica, 1999, 48(12): 2215-2221. doi: 10.7498/aps.48.2215
    [19] LI DING-GUO, ZHENG RUI-LIN, HU LIAN. INVESTIGATION ON FERROMAGNETIC PHASE IN THE 2-DIMENSION LARGE-U HUBBARD MODEL. Acta Physica Sinica, 1992, 41(2): 323-328. doi: 10.7498/aps.41.323
    [20] YANG BING-LIANG, LIU BAI-YONG, Y. C. CHENG, H. WONG. STUDY ON HIGH-FIELD ELECTRON TRAPPING AND DETRAPPING PROPERTY IN THIN SiOx Ny FILMS. Acta Physica Sinica, 1991, 40(11): 1855-1861. doi: 10.7498/aps.40.1855
Metrics
  • Abstract views:  2247
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2023
  • Accepted Date:  11 December 2023
  • Available Online:  22 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回
Baidu
map