-
Gravitational waves (GWs) are ripples in spacetime caused by most violent and energetic processes in the universe, such as the rapid motion of massive celestial bodies. The GWs carry energy when they propagate through the universe. The detection of GWs holds significance for advancing human understanding of the nature and driving scientific and technological progress. The continual upgrading and optimizing of GW detectors offer novel avenues for cosmic measurements. However, ground-based GW detectors based on a large interferometer necessitate addressing various noises which are harmful to the sensitivity of the GW detectors. Among these noises, the noise from residual gas in the light beam of the interferometer is a crucial factor to affect the sensitivity. Consequently, it is necessary to establish a vacuum system to shield the laser interferometer from the effects of gas flow. This paper focuses on China’s third-generation ground-based GWs detector, conducting theoretical analysis of the influence of residual gas noise on both a 20-meter arm-length prototype and a full-scale device with a 10-kilometer arm-length. In this paper, a theoretical model for the residual gas particles passing through the laser beam is established and the effect on the beam phase is analyzed. The theoretical simulations are performed to discover the relations between the residual gas noise and significant parameters such as gas pressure of the vacuum system, temperature, mass of residual gas particles, polarization rate of the residual gas, and the curvature radius of the test mass. The simulations indicate that when the residual gas pressure is below 2×10–6 Pa, the GW detector can achieve the enough sensitivity, 10–24 Hz–1/2, in a frequency range from 10 to 103 Hz. The findings of this research offer crucial theoretical insights for designing and constructing the vacuum systems in future third-generation GWs detector prototypes and full-scale devices.
-
Keywords:
- gravitational wave detection /
- optical interferometer /
- vacuum /
- residual gas noise
[1] 郭宗宽, 蔡荣根, 张元仲 2016 科技导报 34 30Google Scholar
Guo Z K, Cai R G, Zhang Y Z 2016 Sci. Technol. Rev. 34 30Google Scholar
[2] Accadia T, Acernese F, Antonucci F, et al. 2010 Class. Quantum Grav. 27 194011Google Scholar
[3] Ringwald A, Tamarit C 2022 Phys. Rev. D 106 063027Google Scholar
[4] 吴树范, 王楠, 龚德仁 2020 深空探测学报 7 118Google Scholar
Wu S F, Wang N, Gong D R 2020 J. Deep Sp. Explor. 7 118Google Scholar
[5] Clubley D A, Skeldon K D, Newton G P, Barr B W, Strain K A, Hough J 2001 Phys. Lett. A 287 62Google Scholar
[6] Zhao C, Blair D G, Barrigo P, et al. 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p368
[7] Takahashi R, Saito Y, Fukushima M, Ando M, Arai K, Tatsumi D, Heinzel G, Kawamura S, Yamazaki T, Moriwaki S 2002 J. Vac. Sci. Technol. A 20 1237Google Scholar
[8] Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quantum Grav. 27 084023Google Scholar
[9] Hild S, Grote H, Smith J R, Hewitson M 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p66
[10] Acernese F, Adams T, Agathos M, et al. 2015 Proceedings of the 10th International LISA Symposium Florida, United States, May 18–23, 2014 p1
[11] Abbott B P, Abbott R, Adhikari R, et al. 2009 Rep. Prog. Phys. 72 076901Google Scholar
[12] Martynov D V, Hall E D, Abbott B P, et al. 2016 Phys. Rev. D 93 112004Google Scholar
[13] Acernese F, Agathos M, Aiello L, et al. 2020 Phys. Rev. Lett. 125 131101Google Scholar
[14] Dooley K L, Leong J R, Adams T, Affeldt C, Bisht A, Bogan C, Degallaix J, Gräf C, Hild S, Hough J, Khalaidovski A, Lastzka N, Lough J, Lück H, Macleod D, Nuttall L, Prijatelj M, Schnabel R, Schreiber E, Slutsky J, Sorazu B, Strain K A, Vahlbruch H, Wąs M, Willke B, Wittel H, Danzmann K, Grote H 2016 Classical Quantum Grav. 33 075009Google Scholar
[15] Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88 043007Google Scholar
[16] Hall E D, Kuns K, Smith J R, Bai Y, Wipf C, Biscans S, Adhikari R X, Arai K, Ballmer S, Barsotti L 2021 Phys. Rev. D 103 122004Google Scholar
[17] Grado A, Tofani E, Angelucci M, Cimino R, Gargiulo J, Getman F, Liedl A, Limatola L, Mennella V, Pasqualetti A, Ricci F, Sentenac D, Spallino L 2023 J. Vac. Sci. Technol. B 41 024201Google Scholar
[18] Adhikari, Rana X 2014 Rev. Mod. Phys. 86 121Google Scholar
[19] Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011Google Scholar
[20] Georgiadis A, Rogier H, Roselli L, Arcioni P 2012 Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications (Germany: John Wiley & Sons) pp5–25
[21] Li Z X, Gao H, Ding X H, Wang G J, Zhang B 2018 Nat. Commun. 9 3833Google Scholar
[22] 刘志远 2016 科技导报 34 2
Liu Z Y 2016 Sci. Technol. Rev. 34 2
[23] 罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3Google Scholar
Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Sp. Explor. 7 3Google Scholar
[24] Schumaker B L, Caves C M Proceedings of the 5th Rochester Conference on Coherence and Quantum Optics Rochester, USA, June 13–15, 1983 p743
[25] Gillespie A, Raab F 1995 Phys. Rev. D 52 577Google Scholar
[26] Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar
[27] Hughes S A, Thorne K S 1998 Phys. Rev. D 58 122002Google Scholar
[28] Zucker M E, Whitcomb S E 1996 Proceedings of the 7th Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories California, USA, July 24–30, 1994 p1434
[29] Harms J, Paik H J 2015 Phys. Rev. D 92 022001Google Scholar
[30] 王运永, 朱宗宏 2019 现代物理知识 31 56Google Scholar
Wang Y Y, Zhu Z H 2019 Mod. Phys. 31 56Google Scholar
[31] 严宇钊, 杨明, 姜万录 2019 电子测量技术 42 8Google Scholar
Yan Y Z, Yang M, Jiang W L 2019 Electron. Meas. Technol. 42 8Google Scholar
[32] Patel J, Woolley A, Zhao C, Ju L, Blair D G 2010 Vacuum 85 176Google Scholar
[33] 李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 71 164203Google Scholar
Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar
[34] 张天才, 郑耀辉, 牛家树 2022 新兴科学和技术趋势 1 10
Zhang T C, Zheng Y H, Niu J S 2022 Emerging Sci. Technol. 1 10
[35] 王运永, 朱兴江, 刘见, 马宇波, 朱宗宏, 曹军威, 都志辉, 王小鸽, 钱进, 殷聪, 刘忠有 2014 天文学进展 32 348Google Scholar
Wang Y Y, Zhu X J, Liu J, Ma Y B, Zhu Z H, Cai J W, Du Z H, Wang X G, Qian J, Yin C, Liu Z Y 2014 Prog. Astron. 32 348Google Scholar
[36] Santeler D J 1986 J. Vac. Sci. Technol. A 4 338Google Scholar
[37] Tang Y L, He Y L, Meng Y S, Wang W W, Zhang R Y, Du E W, Du L J 2021 Proceedings of the 1st International Conference on Sensors and Instruments Qingdao, China, July 2, 2021 p171
[38] Olney T N, Cann N M, Cooper G, Brion C E 1997 Chem. Phys. 223 59Google Scholar
[39] Ottaway D J, Fritschel P, Waldman S J 2012 Opt. Express 20 8329Google Scholar
[40] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar
[41] Shoemaker D 2011 LIGO Report No. LIGO- M060056-v2
[42] Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322Google Scholar
[43] Akutsu T, Ando M, Arai K, et al. 2019 Class. Quantum Grav. 36 165008Google Scholar
-
表 1 引力波探测干涉仪原型机和全尺寸装置的参数表
Table 1. Parameters of prototype and full-size device of gravitational wave detection interferometer.
参数 符号/单位 原型机参数 全尺寸装置
参数干涉仪长度 L/m 20 104 激光器波长 λ/nm 1550 1550 环境温度 T/K 300 300 残余气体压强 P/Pa 2.0×10–7 2.0×10–6 残余气体质量 m/kg 3.34765×10–27 3.34765×10–27 残余气体
极化率$ \alpha $/(C·m2·V–1) 7.81917×10–31 7.81917×10–31 测试质量
曲率半径R/m 10.2 5100 -
[1] 郭宗宽, 蔡荣根, 张元仲 2016 科技导报 34 30Google Scholar
Guo Z K, Cai R G, Zhang Y Z 2016 Sci. Technol. Rev. 34 30Google Scholar
[2] Accadia T, Acernese F, Antonucci F, et al. 2010 Class. Quantum Grav. 27 194011Google Scholar
[3] Ringwald A, Tamarit C 2022 Phys. Rev. D 106 063027Google Scholar
[4] 吴树范, 王楠, 龚德仁 2020 深空探测学报 7 118Google Scholar
Wu S F, Wang N, Gong D R 2020 J. Deep Sp. Explor. 7 118Google Scholar
[5] Clubley D A, Skeldon K D, Newton G P, Barr B W, Strain K A, Hough J 2001 Phys. Lett. A 287 62Google Scholar
[6] Zhao C, Blair D G, Barrigo P, et al. 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p368
[7] Takahashi R, Saito Y, Fukushima M, Ando M, Arai K, Tatsumi D, Heinzel G, Kawamura S, Yamazaki T, Moriwaki S 2002 J. Vac. Sci. Technol. A 20 1237Google Scholar
[8] Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quantum Grav. 27 084023Google Scholar
[9] Hild S, Grote H, Smith J R, Hewitson M 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p66
[10] Acernese F, Adams T, Agathos M, et al. 2015 Proceedings of the 10th International LISA Symposium Florida, United States, May 18–23, 2014 p1
[11] Abbott B P, Abbott R, Adhikari R, et al. 2009 Rep. Prog. Phys. 72 076901Google Scholar
[12] Martynov D V, Hall E D, Abbott B P, et al. 2016 Phys. Rev. D 93 112004Google Scholar
[13] Acernese F, Agathos M, Aiello L, et al. 2020 Phys. Rev. Lett. 125 131101Google Scholar
[14] Dooley K L, Leong J R, Adams T, Affeldt C, Bisht A, Bogan C, Degallaix J, Gräf C, Hild S, Hough J, Khalaidovski A, Lastzka N, Lough J, Lück H, Macleod D, Nuttall L, Prijatelj M, Schnabel R, Schreiber E, Slutsky J, Sorazu B, Strain K A, Vahlbruch H, Wąs M, Willke B, Wittel H, Danzmann K, Grote H 2016 Classical Quantum Grav. 33 075009Google Scholar
[15] Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88 043007Google Scholar
[16] Hall E D, Kuns K, Smith J R, Bai Y, Wipf C, Biscans S, Adhikari R X, Arai K, Ballmer S, Barsotti L 2021 Phys. Rev. D 103 122004Google Scholar
[17] Grado A, Tofani E, Angelucci M, Cimino R, Gargiulo J, Getman F, Liedl A, Limatola L, Mennella V, Pasqualetti A, Ricci F, Sentenac D, Spallino L 2023 J. Vac. Sci. Technol. B 41 024201Google Scholar
[18] Adhikari, Rana X 2014 Rev. Mod. Phys. 86 121Google Scholar
[19] Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011Google Scholar
[20] Georgiadis A, Rogier H, Roselli L, Arcioni P 2012 Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications (Germany: John Wiley & Sons) pp5–25
[21] Li Z X, Gao H, Ding X H, Wang G J, Zhang B 2018 Nat. Commun. 9 3833Google Scholar
[22] 刘志远 2016 科技导报 34 2
Liu Z Y 2016 Sci. Technol. Rev. 34 2
[23] 罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3Google Scholar
Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Sp. Explor. 7 3Google Scholar
[24] Schumaker B L, Caves C M Proceedings of the 5th Rochester Conference on Coherence and Quantum Optics Rochester, USA, June 13–15, 1983 p743
[25] Gillespie A, Raab F 1995 Phys. Rev. D 52 577Google Scholar
[26] Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar
[27] Hughes S A, Thorne K S 1998 Phys. Rev. D 58 122002Google Scholar
[28] Zucker M E, Whitcomb S E 1996 Proceedings of the 7th Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories California, USA, July 24–30, 1994 p1434
[29] Harms J, Paik H J 2015 Phys. Rev. D 92 022001Google Scholar
[30] 王运永, 朱宗宏 2019 现代物理知识 31 56Google Scholar
Wang Y Y, Zhu Z H 2019 Mod. Phys. 31 56Google Scholar
[31] 严宇钊, 杨明, 姜万录 2019 电子测量技术 42 8Google Scholar
Yan Y Z, Yang M, Jiang W L 2019 Electron. Meas. Technol. 42 8Google Scholar
[32] Patel J, Woolley A, Zhao C, Ju L, Blair D G 2010 Vacuum 85 176Google Scholar
[33] 李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 71 164203Google Scholar
Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar
[34] 张天才, 郑耀辉, 牛家树 2022 新兴科学和技术趋势 1 10
Zhang T C, Zheng Y H, Niu J S 2022 Emerging Sci. Technol. 1 10
[35] 王运永, 朱兴江, 刘见, 马宇波, 朱宗宏, 曹军威, 都志辉, 王小鸽, 钱进, 殷聪, 刘忠有 2014 天文学进展 32 348Google Scholar
Wang Y Y, Zhu X J, Liu J, Ma Y B, Zhu Z H, Cai J W, Du Z H, Wang X G, Qian J, Yin C, Liu Z Y 2014 Prog. Astron. 32 348Google Scholar
[36] Santeler D J 1986 J. Vac. Sci. Technol. A 4 338Google Scholar
[37] Tang Y L, He Y L, Meng Y S, Wang W W, Zhang R Y, Du E W, Du L J 2021 Proceedings of the 1st International Conference on Sensors and Instruments Qingdao, China, July 2, 2021 p171
[38] Olney T N, Cann N M, Cooper G, Brion C E 1997 Chem. Phys. 223 59Google Scholar
[39] Ottaway D J, Fritschel P, Waldman S J 2012 Opt. Express 20 8329Google Scholar
[40] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar
[41] Shoemaker D 2011 LIGO Report No. LIGO- M060056-v2
[42] Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322Google Scholar
[43] Akutsu T, Ando M, Arai K, et al. 2019 Class. Quantum Grav. 36 165008Google Scholar
Catalog
Metrics
- Abstract views: 1929
- PDF Downloads: 66
- Cited By: 0