Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser parameters requirement for third-generation ground-based gravitational wave detection

Li Qing-Hui Li Wei Sun Yu Wang Ya-Jun Tian Long Chen Li-Rong Zhang Peng-Fei Zheng Yao-Hui

Citation:

Laser parameters requirement for third-generation ground-based gravitational wave detection

Li Qing-Hui, Li Wei, Sun Yu, Wang Ya-Jun, Tian Long, Chen Li-Rong, Zhang Peng-Fei, Zheng Yao-Hui
PDF
HTML
Get Citation
  • Gravitational waves (GWs), predicted by the general relativity of Albert Einstein, are ripples in space-time caused by massive accelerating objects. Since the first direct observation of GWs in 2015, more and more binary black hole mergers and neutron star merger were detected by the laser interferometer gravitational-wave observatory (LIGO) and the Virgo interferometric detector. The construction of the third-generation (3G) gravitational wave detector(GWD), whose sensitivity is ten times that of the second-generation (2G) GWD (Advanced LIGO and Virgo), can not only push the gravitational wave astronomy towards the edge of the observable universe, but also test the fundamental laws of physics and study the nature of matter. By utilizing the abandoned underground mines, Shanxi university proposes to construct a 3G ground-based gravitational wave detector with an arm length of 10 km and a strain sensitivity of 10–24 Hz–1/2, improving the location accuracy of wave source by participating in the global GWD network. The construction of 3G GWD has many technical challenges, including ultrahigh large-scale vacuum system, ultrastable seismic isolation system, high-precision control system, high-quality laser and quantum source. Theoretically, the sensitivity of GWD with equal arm length is not limited by the laser source noise. However, in the actual scenario, the sensitivity is limited by the differences in arm length, arm cavity linewidth, arm reflectivity, arm mass, arm power, and the laser parameters. In this work, based on the design sensitivity (10–24 Hz–1/2) of dual-recycled Fabry-Perot Michelson interferometer, we propose the requirements for an ultra low-noise laser, including wavelength, amplitude noise, frequency noise, beam pointing noise and fundamental mode purity. The results show that in order to achieve the design sensitivity at the Fourier frequency of 100 Hz, the wavelength of the laser source should be 1.5 μm, the output power should be higher than 200 W, the amplitude noise should be better than 10–8 Hz–1/2, and the frequency noise should be better than 100 Hz/Hz1/2. To achieve the sensitivity of 10–24 Hz–1/2 at 10 Hz analysis frequency, the requirements for the amplitude and frequency noise of the laser source are much more stringent. This study lays a solid foundation for the analysis of laser source noise and the decomposition of interferometer indexes .
      Corresponding author: Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grant Nos. 62027821, 11874250, 62035015, 12174234), the Key Research and Development Projects of Shanxi Province (Grant No. 201903D111001), and the Program for Sanjin Scholar of Shanxi Province.
    [1]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 241103Google Scholar

    [3]

    Vermeulen S M, Relton P, Grote H, et al. 2021 Nature 600 424Google Scholar

    [4]

    Bailes M, Berger B K, Brady P R, et al. 2021 Nat. Rev. Phys. 3 344Google Scholar

    [5]

    Abbott R, Abbott T D, Abraham S, et al. 2021 Astrophys. J. Lett. 915 L5Google Scholar

    [6]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006Google Scholar

    [7]

    Hall E D, Kuns K, Smith J R, et al. 2021 Phys. Rev. D 103 122004Google Scholar

    [8]

    Buikema A, Cahillane C, Mansell G L, et al. 2020 Phys. Rev. D 102 062003Google Scholar

    [9]

    Adhikari R X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [10]

    Bond C, Brown D, Freise A, Strain K A 2016 Living Rev. Relativ. 19 3Google Scholar

    [11]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quant. Grav. 32 185003Google Scholar

    [12]

    P. Nguyen, Schofield R M S, Effler A, et al. 2021 Classical Quant. Grav. 38 145001Google Scholar

    [13]

    Adhikari R X, Arai K, Brooks A F, et al. 2020 Classical Quant. Grav. 37 165003Google Scholar

    [14]

    Hammond G, Hild S, Pitkin M 2014 J. Mod. Optic. 61 S10Google Scholar

    [15]

    Heurs M 2018 Philos. T. R. Soc. A 376 20170289Google Scholar

    [16]

    Danilishin S L, Khalili F Y, Miao H 2019 Living Rev. Relativ. 22 2Google Scholar

    [17]

    Sigg D 1997 LIGO Report No. LIGO- T970084-00 D

    [18]

    Rana A 2004 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [19]

    Somiya K, Chen Y 2006 Phys. Rev. D 73 122005Google Scholar

    [20]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500325

    [21]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500461

    [22]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500559

    [23]

    Cahillane C 2021 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [24]

    Cahillane C, Mansell G L, Sigg D 2021 Opt. Express 29 42144Google Scholar

    [25]

    Buonanno A, Chen Y 2001 Phys. Rev. D 64 042006Google Scholar

    [26]

    Pitkin M, Reid S, Rowan S, Hough J 2011 Living Rev. Relativ. 14 5Google Scholar

    [27]

    Kwee P 2010 Ph. D. Dissertation (Hanover: Wilhelm Leibniz University)

    [28]

    Chen Z, Guo M, Zhang R, Zhou B, Wei Q 2018 Sensors 18 02603Google Scholar

    [29]

    Degallaix J, Komma J, Forest D, Hofmann G 2014 Classical Quant. Grav. 31 185010Google Scholar

    [30]

    Khalaidovski A, Steinlechner J, Schnabel R 2013 Classical Quant. Grav. 30 165001Google Scholar

    [31]

    Biscans S, Gras S, Blair C D, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 Phys. Rev. D 100 122003Google Scholar

  • 图 1  引力波探测器光路图

    Figure 1.  Diagram of the optical layout of Gravitational wave detection.

    图 2  探测灵敏度与激光功率的关系图

    Figure 2.  Detection sensitivity as a function of laser power.

    图 3  激光源振幅噪声耦合传递函数图  (a) DARM偏移、辐射压力差异和对比度缺陷引起的振幅噪声耦合; (b) 辐射压力差异引起的振幅噪声耦合

    Figure 3.  Coupling transfer function of laser amplitude noise: (a) Amplitude noise coupling due to DARM offset, radiation pressure difference and contrast defect; (b) amplitude noise coupling due to radiation pressure difference.

    图 4  探测灵敏度与激光源振幅噪声关系图

    Figure 4.  Detection sensitivity as a function of laser amplitude noise.

    图 5  激光频率噪声耦合传递函数图

    Figure 5.  Coupling transfer function of laser frequency noise.

    图 6  探测灵敏度与激光源频率噪声关系图

    Figure 6.  Detection sensitivity as a function of laser frequency noise.

    表 1  山西大学引力波探测干涉仪参数表

    Table 1.  Parameter of Shanxi University gravitation waves detection interferometer.

    参数符号表示数值
    臂长$ L $10 km
    激光波长$ \lambda $1550 nm
    激光频率$ {\nu _0} $1.94 × 1014 Hz
    ITM, ETM质量$ M $200 kg
    约化质量$ \mu = \dfrac{{{m_{\text{i}}}{m_{\text{e}}}}}{{{m_{\text{i}}} + {m_{\text{e}}}}} = \dfrac{M}{2} $100 kg
    $ \delta \mu = \dfrac{{{\mu _x} - {\mu _y}}}{2} $–0.001 kg
    ITM透射率$ t_{\text{i}}^{\text{2}} $1.4%
    ETM透射率$ t_{\text{e}}^2 $5 × 10–6
    PRM透射率$ t_{\text{p}}^2 $3%
    SRM透射率$ t_{\text{s}}^{\text{2}} $20%
    激光功率$ {P_{{\text{in}}}} $200 W
    功率循环腔增益$ g_{\text{p}}^2 = {\left( {\dfrac{{{t_{\text{p}}}}}{{1 - {r_{\text{p}}}{r_{\text{a}}}}}} \right)^2} $120
    信号循环腔增益$ g_{\text{s}}^{\text{2}} = {\left( {\dfrac{{{t_{\text{s}}}}}{{1 + {r_{\text{s}}}{r_{\text{a}}}}}} \right)^2} $0.06
    臂腔增益$ g_{{\text{arm}}}^{\text{2}} = {\left( {\dfrac{{{t_{\text{i}}}}}{{1 - {r_{\text{e}}}{r_{\text{i}}}}}} \right)^2} $284
    臂腔反射率$ {r_{\text{a}}} = \dfrac{{ - {r_{\text{i}}} + {r_{\text{e}}}}}{{1 - {r_{\text{i}}}{r_{\text{e}}}}} $0.99929
    $ \delta {r_{\text{a}}} = \dfrac{{{r_{{\text{a}}x}} - {r_{{\text{a}}y}}}}{2} $31 × 10–6
    反射率导数$r_{\text{a} }' = \dfrac{ {t_{\text{i} }^{\text{2} }{r_{\text{e} } } }}{ { { {\left( {1 - {r_{\text{i} } }{r_{\text{e} } } } \right)}^2} } }$283.5
    臂腔线宽$ {f_c} = \dfrac{c}{{4{\text{π }}L}}\lg \left( {\dfrac{1}{{r_{\text{i}}^{\text{2}}r_{\text{e}}^{\text{2}}}}} \right) $14.6 Hz
    $ \delta {f_c} = \dfrac{{{f_{cx}} - {f_{cy}}}}{2} $0.05 Hz
    臂腔精细度$ F = \dfrac{{{\text{π }}\sqrt {{r_{\text{i}}}{r_{\text{e}}}} }}{{1 - {r_{\text{i}}}{r_{\text{e}}}}} $445.5
    总损耗$ T $2.24 %
    臂腔功率$ {P_{\text{a}}} = \dfrac{1}{2}{P_{{\text{laser}}}}g_{\text{p}}^{\text{2}}g_{{\text{arm}}}^2 $3.4 MW
    $ \delta {P_{\text{a}}} = \dfrac{{{P_{ax}} - {P_{ay}}}}{2} $–6.5 kW
    CARM腔
    线宽
    ${f_{cc} } = \dfrac{c}{ {4{\text{π } }L} }\lg \left( {\dfrac{ {1 + {r_{\text{i} } }{r_{\text{p} } } }}{ { {r_{\text{i} } }{r_{\text{e} } } + {r_{\text{p} } }{r_{\text{e} } }\left( {t_{\text{i} }^{\text{2} } + r_{\text{i} }^{\text{2} } } \right)} } } \right)$0.06 Hz
    DARM腔
    线宽
    $ {f_{{\text{rse}}}} = \dfrac{c}{{4{\text{π }}L}}\lg \left( {\dfrac{{1 - {r_{\text{i}}}{r_{\text{s}}}}}{{{r_{\text{i}}}{r_{\text{e}}} - {r_{\text{s}}}{r_{\text{e}}}\left( {t_{\text{i}}^{\text{2}} + r_{\text{i}}^{\text{2}}} \right)}}} \right) $131 Hz
    Schnupp
    不对称
    $ {l_{{\text{sch}}}} = {l_x} - {l_y} $0.08 m
    DARM偏移$ \Delta {L_{{\text{DC}}}} $10–13 m
    高阶模耦合$ {q_{{\text{HOM}}}} $1 × 10–7 W/RAN
    $ {k_{{\text{HOM}}}} $8 × 10–17 m/Hz
    DownLoad: CSV

    表 2  熔融石英和硅材料的物理性质对比

    Table 2.  Comparison of physical properties of fused silica and silicon materials.

    比较参数硅(~123 K)熔融石英(~300 K)
    密度/(g·cm3)3.432.21
    折射率(@1.5 μm)~3.48411.445
    热膨胀系数/K–10.001 × 10–65.5 × 10–7
    热导率/
    (W·(m K)–1)
    598.31.38
    吸收系数/cm–11.11×10 @1064 nm4×10–6@1064 nm
    3.2×10–8 @1550 nm2×10–5@1550 nm
    机械损耗角/rad0.00139 × 10–61 × 10–4
    杨氏模量/GPa131.173
    泊松比0.2790.17
    DownLoad: CSV
    Baidu
  • [1]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 241103Google Scholar

    [3]

    Vermeulen S M, Relton P, Grote H, et al. 2021 Nature 600 424Google Scholar

    [4]

    Bailes M, Berger B K, Brady P R, et al. 2021 Nat. Rev. Phys. 3 344Google Scholar

    [5]

    Abbott R, Abbott T D, Abraham S, et al. 2021 Astrophys. J. Lett. 915 L5Google Scholar

    [6]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006Google Scholar

    [7]

    Hall E D, Kuns K, Smith J R, et al. 2021 Phys. Rev. D 103 122004Google Scholar

    [8]

    Buikema A, Cahillane C, Mansell G L, et al. 2020 Phys. Rev. D 102 062003Google Scholar

    [9]

    Adhikari R X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [10]

    Bond C, Brown D, Freise A, Strain K A 2016 Living Rev. Relativ. 19 3Google Scholar

    [11]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quant. Grav. 32 185003Google Scholar

    [12]

    P. Nguyen, Schofield R M S, Effler A, et al. 2021 Classical Quant. Grav. 38 145001Google Scholar

    [13]

    Adhikari R X, Arai K, Brooks A F, et al. 2020 Classical Quant. Grav. 37 165003Google Scholar

    [14]

    Hammond G, Hild S, Pitkin M 2014 J. Mod. Optic. 61 S10Google Scholar

    [15]

    Heurs M 2018 Philos. T. R. Soc. A 376 20170289Google Scholar

    [16]

    Danilishin S L, Khalili F Y, Miao H 2019 Living Rev. Relativ. 22 2Google Scholar

    [17]

    Sigg D 1997 LIGO Report No. LIGO- T970084-00 D

    [18]

    Rana A 2004 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [19]

    Somiya K, Chen Y 2006 Phys. Rev. D 73 122005Google Scholar

    [20]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500325

    [21]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500461

    [22]

    Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500559

    [23]

    Cahillane C 2021 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [24]

    Cahillane C, Mansell G L, Sigg D 2021 Opt. Express 29 42144Google Scholar

    [25]

    Buonanno A, Chen Y 2001 Phys. Rev. D 64 042006Google Scholar

    [26]

    Pitkin M, Reid S, Rowan S, Hough J 2011 Living Rev. Relativ. 14 5Google Scholar

    [27]

    Kwee P 2010 Ph. D. Dissertation (Hanover: Wilhelm Leibniz University)

    [28]

    Chen Z, Guo M, Zhang R, Zhou B, Wei Q 2018 Sensors 18 02603Google Scholar

    [29]

    Degallaix J, Komma J, Forest D, Hofmann G 2014 Classical Quant. Grav. 31 185010Google Scholar

    [30]

    Khalaidovski A, Steinlechner J, Schnabel R 2013 Classical Quant. Grav. 30 165001Google Scholar

    [31]

    Biscans S, Gras S, Blair C D, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 Phys. Rev. D 100 122003Google Scholar

  • [1] Ruan Yuan-Dong, Zhang Zhi-Hao, Jia Jiang-Xie, Gu Yu-Ning, Zhang Shan-Duan, Cui Xu-Gao, Hong Wei, Bai Yan-Zheng, Tian Peng-Fei. Application of ultraviolet light sources in charge management systems for space gravitational wave detection. Acta Physica Sinica, 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [2] Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui. Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers. Acta Physica Sinica, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [3] Guo Xi-Qing, Zhou Jing, Wang Chen-Xi, Qin Chen, Guo Cheng-Zhe, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Residual gas noises in vacuum of optical interferometer for ground-based gravitational wave detection. Acta Physica Sinica, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [4] Kou Ke, Wang Cuo, Wang Xian, Lian Tian-Hong, Jiao Ming-Xing, Fan Yu-Zhen. Sensitivity enhancement in laser self-mixing nano-particle sizer with linear current tuning based frequency shifting method. Acta Physica Sinica, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [5] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [6] Wang Jia-Wei, Li Jian-Bo, Li Fan, Zheng Li-Ang, Gao Zi-Chao, An Bing-Nan, Ma Zheng-Lei, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Programmable precision voltage reference source for space-based gravitational wave detection. Acta Physica Sinica, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [7] Wang Kai, Lin Bai-Ke, Song You-Jian, Meng Fei, Lin Yi-Ge, Cao Shi-Ying, Hu Ming-Lie, Fang Zhan-Jun. Low-noise microwave generation based on optical-microwave synchronization. Acta Physica Sinica, 2022, 71(4): 044204. doi: 10.7498/aps.71.20211253
    [8] Li Fan, Wang Jia-Wei, Gao Zi-Chao, Li Jian-Bo, An Bing-Nan, Li Rui-Xin, Bai Yu, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Laser intensity noise evaluation system for space-based gravitational wave detection. Acta Physica Sinica, 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [9] Low-noise microwave generation based on optical-microwave synchronization. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211253
    [10] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [11] Tian Jing, Hou Mei-Jiang, Jiang Yang, Zhang Hong-Xu, Bai Guang-Fu, Feng Hao. High sensitivity fiber displacement sensor based compound ring laser cavity with linear variation of beat frequency signal. Acta Physica Sinica, 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [12] Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen. Design and fabrication of low-noise superconducting quantum interference device magnetometer. Acta Physica Sinica, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [13] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [14] Chi Lang, Fei Hong-Tao, Wang Teng, Yi Jian-Peng, Fang Yue-Ting, Xia Rui-Dong. A highly sensitive chemosensor for solution based on organic semiconductor laser gain media. Acta Physica Sinica, 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [15] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [16] Qu Jian-Ling, Wang Xiao-Fei, Gao Feng, Zhou Yu-Ping, Zhang Xiang-Yu. Noise assisted signal decomposition method based on complex empirical mode decomposition. Acta Physica Sinica, 2014, 63(11): 110201. doi: 10.7498/aps.63.110201
    [17] Gu Yuan, Shi Rong-Ye, Wang Yan-Hui. study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer. Acta Physica Sinica, 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [18] Li Nan, Huang Kai-Kai, Lu Xuan-Hui. Study on the sensitivity of laser-pumped cesium atomic magnetometer. Acta Physica Sinica, 2013, 62(13): 133201. doi: 10.7498/aps.62.133201
    [19] Wu Jian-Xiong, Cheng Teng, Zhang Qing-Chuan, Gao Jie, Wu Xiao-Ping. Optical detection sensitivity of area light source in optical read-out IR imaging. Acta Physica Sinica, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [20] HUANG XIAN-GAO, XU JIAN-XUE, HE DAI-HAI, XIA JUN-LI, LV ZE-JUN. REDUCTION OF NOISE IN CHAOTIC SYSTEMS BY WAVELET MULTISCALING DECOMPOSITION ALGORITHM. Acta Physica Sinica, 1999, 48(10): 1810-1817. doi: 10.7498/aps.48.1810
Metrics
  • Abstract views:  4236
  • PDF Downloads:  162
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2022
  • Accepted Date:  15 April 2022
  • Available Online:  09 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回
Baidu
map