搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于固体腔扫描法布里-珀罗干涉仪的大气温度绝对探测方法研究

王骏 崔萌 陆红 汪丽 闫庆 刘晶晶 华灯鑫

引用本文:
Citation:

基于固体腔扫描法布里-珀罗干涉仪的大气温度绝对探测方法研究

王骏, 崔萌, 陆红, 汪丽, 闫庆, 刘晶晶, 华灯鑫

Investigation of the absolute detection method of atmospheric temperature based on solid cavity scanning Fabry-Perot interferometer

Wang Jun, Cui Meng, Lu Hong, Wang Li, Yan Qing, Liu Jing-Jing, Hua Deng-Xin
PDF
导出引用
  • 大气温度是描述大气状态的重要基本特征参量之一. 目前,基于Rayleigh散射的大气温度探测方法多应用于大气温度的相对探测,即温度反演时需要响应函数和校准程序. 本文提出了利用固体腔扫描式法布里-珀罗干涉仪进行大气Rayleigh散射谱型的精细探测方法和残余米散射信号的抑制方法. 根据Rayleigh散射谱特点,针对固体腔扫描式法布里-珀罗干涉仪的自由光谱区、固体腔几何长度、腔体介质类型、半高全宽、腔体反射率、扫描间隔等参数进行了优化设计. 利用优化参数的固体腔扫描式法布里-珀罗干涉仪获取Rayleigh散射谱上离散点信息,并采用多项式插值方法获得拟合谱型,与根据标准大气模型和S6模型获得的理论谱型进行比对,大气温度探测不确定度小于0.8 K. 当信噪比为10时,白天与夜晚的探测距离分别为4.5 和7.9 km. 该方法可实现大气温度廓线的全天时和高精度绝对探测,并对同类高光谱激光雷达分光系统研究具有借鉴意义,为我国高光谱激光雷达陆基及星载应用提供了一套可行的分光系统解决方案.
    measurement methods based on Rayleigh scattering are employed to relatively detect atmospheric temperature profiles. That is to say, the definition of response functions and calibration procedures is required for temperature retrieval. Because the thermal motion rate of gas molecule complies with Maxwell distribution, and gas molecule is always in motion state, the frequency of scattering return signal generates Doppler spectral broadening. There is a positive correlation between the full width at half maximum of widened Doppler spectrum and T1/2, atmospheric absolute temperature can be obtained by measuring the Doppler spectrum shape. In this paper, the fine detection method of the spectrum shape of Rayleigh scattering and residuary Mie-scattering correction method based on solid cavity scanning Fabry-Perot (F-P) interferometer are investigated. According to the characteristics of Rayleigh scattering spectrum, the free spectral range, the geometric length of solid cavity, the type of cavity media, the full width at half maximum, the reflectivity of cavity, and the scanning step are designed. When the electro-optical crystal of KD*P with the length of 8.5 mm acts as solid cavity medium of scanning F-P interferometer, the designed free spectral region and 3 dB bandwidth are 11.5 GHz and 60 MHz at the central wavelength of 354.7 nm, respectively. The energy datum of 185 discrete points at Rayleigh scattering spectrum are obtained by using an optimized solid cavity scanning F-P interferometer with the scanning voltage of 23.5 V. A fitting spectrum is generated by employing polynomial interpolation method at the atmospheric temperature of 300 K. The maximum absolute error and full width at half maximum error of Rayleigh scattering spectrum are 22 MHz and 337 kHz, respectively. In order to verify the results, a numerical simulation of Rayleigh scattering spectrum based on standard atmosphere model and S6 model is performed. The detection uncertainty of atmospheric temperature is up to 0.8 K. As SNR (signal to noise ratio) is 10, the detection distance is 4.5 and 7.9 km at day-time and night-time, respectively. The research provides a new solution of filter system for the achievement of all-time, high-precision, and absolute detection of atmospheric temperature in the future. In meteorology, in order to investigate the temporal and spatial characteristics, the change rules and physical mechanism of weather processes, the temperature in the boundary layer of urban atmosphere is absolutely detected, where human activities are frequent and the changes of weather elements are obviously at day and night. In addition, the absolute detection method of atmospheric temperature can provide the valid means to research urban heat island, weather forecast for urban environment, and high temperature alert. In environmental studies, the absolute detection of atmospheric temperature can provide the big amount of scientific data for establishment of numerical model and research on air pollution diffusion. There is reference significance for the investigation of filter system of similar lidar. Simultaneously, the scanning filter method provides a feasible solution for the filter system with the characteristics of miniaturization, high anti-interference and high stability in the space-based platform.
      通信作者: 华灯鑫, dengxinhua@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575159,41627807)、陕西省自然科学基金(批准号:2016JM6010)、陕西省教育厅科学研究计划专项(批准号:15JK1529)和中国博士后科学基金(批准号:2015M570846)资助的课题.
      Corresponding author: Hua Deng-Xin, dengxinhua@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575159, 41627807), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JM6010), the Scientific Research Plan Project of Shaanxi Education Department, China (Grant No. 15JK1529), and the China Postdoctoral Science Foundation (Grant No. 2015M570846).
    [1]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 7 2294 (in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球 7 2294]

    [2]

    Gong X, Hua D X, Li S C, Wang J, Shi X J 2016 Acta Phys. Sin. 65 073601 (in Chinese) [巩鑫, 华灯鑫, 李仕春, 王骏, 石晓菁 2016 65 073601]

    [3]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 62 120701]

    [4]

    Liu J, Hua D X, Li Y 2007 Acta Opt. Sin. 27 755 (in Chinese) [刘君, 华灯鑫, 李言 2007 光学学报 27 755]

    [5]

    Nobuki K, Akihito H, Shumpei K 2012 Laser Radar Technology and Applications XVII Baltimore, Maryland, USA, May 1-3, 2012 p8379

    [6]

    Fiocco G, Beneditti M G, Maschberger K, Madonna E 1971 Nature Phys. Sci. 229 78

    [7]

    Guo J J, Yan S A, Wu S H, Song X Q, Liu Z S 2008 J. Optoe. Laser 19 66 (in Chinese) [郭金家, 闫召爱, 吴松华, 宋小全, 刘智深 2008 光电子激光 19 66]

    [8]

    Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373

    [9]

    Alvarez R J, Caldwell L M, Li Y H, Krueger D A, She C Y 1990 J. Atmos. Ocean. Technol. 7 876

    [10]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1315

    [11]

    Graul J, Lilly T 2014 Opt. Express 22 20117

    [12]

    Gu Z Y, Witschas B, Water W V D, Ubachs W 2013 Appl. Opt. 52 4640

    [13]

    Ma Y, Fan F, Liang K, Li H, Yu Y, Zhou B 2012 J. Opt. 14 095703

    [14]

    Gerakis A, Shneider M N, Barker P F 2011 Opt. Express 19 24046

    [15]

    Li C S 2014 Acta Phys. Sin. 63 074207 (in Chinese) [李长胜 2014 63 074207]

    [16]

    Witschas B, Gu Z Y, Ubachs W 2014 Opt. Express 22 29655

    [17]

    Kischkata J, Petersb S, Semtsiva M P, Wegnera T, Elagina M, Monastyrskyia G, Floresa Y, Kurlova S, Masselink W T 2014 Infrared Phys. Techn. 67 432

    [18]

    Alvarez R J, Caldwell L M, Li Y H, Krueger D A, She C Y 1990 J. Atmos. Ocean. Technol. 7 876

    [19]

    Zhong D Z, She W L 2012 Acta Phys. Sin. 61 064214 (in Chinese) [钟东洲, 佘卫龙 2012 61 064214]

    [20]

    Wang Q M, Zhang Y M 2006 Meteorol. Sci. Technol. 34 246 (in Chinese) [王青梅, 张以谟 2006 气象科技 34 246]

  • [1]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 7 2294 (in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球 7 2294]

    [2]

    Gong X, Hua D X, Li S C, Wang J, Shi X J 2016 Acta Phys. Sin. 65 073601 (in Chinese) [巩鑫, 华灯鑫, 李仕春, 王骏, 石晓菁 2016 65 073601]

    [3]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 62 120701]

    [4]

    Liu J, Hua D X, Li Y 2007 Acta Opt. Sin. 27 755 (in Chinese) [刘君, 华灯鑫, 李言 2007 光学学报 27 755]

    [5]

    Nobuki K, Akihito H, Shumpei K 2012 Laser Radar Technology and Applications XVII Baltimore, Maryland, USA, May 1-3, 2012 p8379

    [6]

    Fiocco G, Beneditti M G, Maschberger K, Madonna E 1971 Nature Phys. Sci. 229 78

    [7]

    Guo J J, Yan S A, Wu S H, Song X Q, Liu Z S 2008 J. Optoe. Laser 19 66 (in Chinese) [郭金家, 闫召爱, 吴松华, 宋小全, 刘智深 2008 光电子激光 19 66]

    [8]

    Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373

    [9]

    Alvarez R J, Caldwell L M, Li Y H, Krueger D A, She C Y 1990 J. Atmos. Ocean. Technol. 7 876

    [10]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1315

    [11]

    Graul J, Lilly T 2014 Opt. Express 22 20117

    [12]

    Gu Z Y, Witschas B, Water W V D, Ubachs W 2013 Appl. Opt. 52 4640

    [13]

    Ma Y, Fan F, Liang K, Li H, Yu Y, Zhou B 2012 J. Opt. 14 095703

    [14]

    Gerakis A, Shneider M N, Barker P F 2011 Opt. Express 19 24046

    [15]

    Li C S 2014 Acta Phys. Sin. 63 074207 (in Chinese) [李长胜 2014 63 074207]

    [16]

    Witschas B, Gu Z Y, Ubachs W 2014 Opt. Express 22 29655

    [17]

    Kischkata J, Petersb S, Semtsiva M P, Wegnera T, Elagina M, Monastyrskyia G, Floresa Y, Kurlova S, Masselink W T 2014 Infrared Phys. Techn. 67 432

    [18]

    Alvarez R J, Caldwell L M, Li Y H, Krueger D A, She C Y 1990 J. Atmos. Ocean. Technol. 7 876

    [19]

    Zhong D Z, She W L 2012 Acta Phys. Sin. 61 064214 (in Chinese) [钟东洲, 佘卫龙 2012 61 064214]

    [20]

    Wang Q M, Zhang Y M 2006 Meteorol. Sci. Technol. 34 246 (in Chinese) [王青梅, 张以谟 2006 气象科技 34 246]

  • [1] 王松, 周闯, 李素文, 牟福生. 基于法布里-珀罗干涉仪测量大气环境CO2的方法.  , 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真.  , 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [3] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析.  , 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [4] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展.  , 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [5] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器.  , 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [6] 巩鑫, 华灯鑫, 李仕春, 王骏, 石晓菁. 基于取样光纤布拉格光栅的全光纤拉曼测温分光系统设计及优化.  , 2016, 65(7): 073601. doi: 10.7498/aps.65.073601
    [7] 李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫. 绝对探测大气温度的纯转动拉曼激光雷达系统.  , 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [8] 陈浩, 华灯鑫, 张毅坤, 朱承炫. 米散射激光雷达剖面数据三次样条垂直水平插值法.  , 2014, 63(15): 154204. doi: 10.7498/aps.63.154204
    [9] 任秀云, 田兆硕, 杨敏, 孙兰君, 付石友. 相干瑞利散射海水水下温度测量技术的理论研究.  , 2014, 63(8): 083302. doi: 10.7498/aps.63.083302
    [10] 青海银, 张援农, 周晨, 赵正予, 陈罡. 基于MST雷达垂直风速的大气温度剖面反演.  , 2014, 63(9): 094301. doi: 10.7498/aps.63.094301
    [11] 王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎. 水汽探测拉曼激光雷达的新型光谱分光系统设计与分析.  , 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [12] 赵江南, 艾勇, 王敬芳. 不需要校准激光的法-帕仪中高层大气温度反演方法和观测数据初步分析.  , 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [13] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法.  , 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [14] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性.  , 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [15] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差.  , 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [16] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达.  , 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [17] 王治华, 贺应红, 左浩毅, 郑玉臣, 杨经国. 基于高斯光束特性的Mie散射大气激光雷达回波近场信号校正研究.  , 2006, 55(6): 3188-3192. doi: 10.7498/aps.55.3188
    [18] 运 鹏, 迟荣华, 李乙钢, 吕可诚. 拉曼抽运下的布里渊-瑞利散射研究.  , 2004, 53(12): 4229-4235. doi: 10.7498/aps.53.4229
    [19] 寿 倩, 张海潮, 邓 莉, 刘叶新, 林位株. 四波混频与瑞利散射场的干涉现象.  , 2003, 52(4): 1019-1022. doi: 10.7498/aps.52.1019
    [20] 张明荣, 殷之文, 李培俊, 胡关钦. 激光Raman散射光谱法对PWO晶体结构的判定.  , 1999, 48(5): 898-903. doi: 10.7498/aps.48.898
计量
  • 文章访问数:  5851
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-05
  • 修回日期:  2017-01-21
  • 刊出日期:  2017-04-05

/

返回文章
返回
Baidu
map